首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   25篇
  国内免费   24篇
电工技术   1篇
综合类   4篇
化学工业   201篇
金属工艺   22篇
机械仪表   7篇
建筑科学   9篇
轻工业   87篇
水利工程   1篇
无线电   11篇
一般工业技术   32篇
冶金工业   6篇
原子能技术   1篇
自动化技术   4篇
  2024年   1篇
  2023年   13篇
  2022年   55篇
  2021年   85篇
  2020年   28篇
  2019年   11篇
  2018年   12篇
  2017年   7篇
  2016年   20篇
  2015年   20篇
  2014年   13篇
  2013年   16篇
  2012年   19篇
  2011年   12篇
  2010年   13篇
  2009年   9篇
  2008年   10篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有386条查询结果,搜索用时 31 毫秒
1.
In this study, the anti-atherosclerotic properties of three marine phospholipids (MPLs) extracts from fishery by-products including codfish roe, squid gonad, and shrimp head are verified. Their effects on key factors involved in atherosclerosis are examined and compared to explore whether the differences in their constitutions lead to the differences in the function. All three MPLs dampen oxidation of low- density lipoproteins (LDL) in vitro. Treating RAW264.7 macrophages and HUVECs endothelial cells with each MPLs ranging 10–100 µg mL−1 does not decrease cell viability, yet ox-LDL caused cytotoxicity of both cells are alleviated by 50 or 100 µg mL−1 MPLs treatment. In addition, the three MPLs reduce ox-LDL induced macrophage foam-like transition, mainly through inhibition of lipid uptake. Of the three MPLs, the one from squid gonad exhibits the best effect. On the other hand, all three MPLs modulate inflammatory responses, equally, by inhibiting the adhesion of monocytes to endothelial cells, and decreasing secretion of pro-inflammatory cytokines IL-6 and MCP-1. Using a high-cholesterol diet induced zebrafish model, it is found that all three MPLs, especially the one from squid gonad, alleviates cholesterol accumulation in early plaques, and decreases total cholesterol as well as lipid peroxide in vivo. Practical Applications: As a way of making the best of the increasingly scarce marine resources, valuable lipid components can be recovered from by-products and wastes from the fishery industry. Here, we tested the anti-atherosclerotic effects and the mechanisms of three MPLs extracted from codfish roe, squid gonad, and shrimp head. Our study provides further evidence that marine phospholipids extracted from fishery by-products could protect against atherosclerosis, and helps to elucidate the structure-function relationship of MPLs.  相似文献   
2.
The development, progression, or stabilization of the atherosclerotic plaque depends on the pro-inflammatory and anti-inflammatory macrophages. The influx of the macrophages and the regulation of macrophage phenotype, inflammatory or anti-inflammatory, are controlled by the small GTPase RhoA and its downstream effectors. Therefore, macrophages and the components of the RhoA pathway are attractive targets for anti-atherosclerotic therapies, which would inhibit macrophage influx and inflammatory phenotype, maintain an anti-inflammatory environment, and promote tissue remodeling and repair. Here, we discuss the recent findings on the role of macrophages and RhoA pathway in the atherosclerotic plaque formation and resolution and the novel therapeutic approaches.  相似文献   
3.
Neutrophils are primary effector cells of innate immunity and fight infection by phagocytosis and degranulation. Activated neutrophils also release neutrophil extracellular traps (NETs) in response to a variety of stimuli. These NETs are net-like complexes composed of cell-free DNA, histones and neutrophil granule proteins. Besides the evolutionarily conserved mechanism to capture and eliminate pathogens, NETs are also associated with pathophysiological processes of various diseases. Here, we elucidate the mechanisms of NET formation and their different implications in disease. We focused on autoinflammatory and cardiovascular disorders as the leading cause of death. Neutrophil extracellular traps are not only present in various cardiovascular diseases but play an essential role in atherosclerotic plaque formation, arterial and venous thrombosis, as well as in the development and progression of abdominal aortic aneurysms. Furthermore, NETosis can be considered as a source of autoantigens and maintains an inflammatory milieu promoting autoimmune diseases. Indeed, there is further need for research into the balance between NET induction, inhibition, and degradation in order to pharmacologically target NETs and their compounds without impairing the patient’s immune defense. This review may be of interest to both basic scientists and clinicians to stimulate translational research and innovative clinical approaches.  相似文献   
4.
In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes.  相似文献   
5.
The purpose of the work was to study the impact of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) and its degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH1), on atherosclerosis in subtotally nephrectomized (SNX) ApoE-deficient mice. Male DDAH1 transgenic mice (TG, n = 39) and C57Bl/6J wild-type littermates (WT, n = 27) with or without the deletion of the ApoE gene underwent SNX at the age of eight weeks. Animals were sacrificed at 12 months of age, and blood chemistry, as well as the extent of atherosclerosis within the entire aorta were analyzed. Sham treated (no renal mass reduction) ApoE-competent DDAH1 transgenic and wild-type littermates (n = 11) served as a control group. Overexpression of DDAH1 was associated with significantly lower ADMA levels in all treatment groups. Surprisingly, SNX mice did not exhibit higher ADMA levels compared to sham treated control mice. Furthermore, the degree of atherosclerosis in ApoE-deficient mice with SNX was similar in mice with or without overexpression of DDAH1. Overexpression of the ADMA degrading enzyme, DDAH1, did not ameliorate atherosclerosis in ApoE-deficient SNX mice. Furthermore, SNX in mice had no impact on ADMA levels, suggesting a minor role of this molecule in chronic kidney disease (CKD) in this mouse model.  相似文献   
6.
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.  相似文献   
7.
For more than a decade, atherosclerosis has been one of the leading causes of death in developed countries. The issue of treatment and prevention of the disease is especially acute. Despite the huge amount of basic and clinical research, a significant number of gaps remain in our understanding of the pathogenesis of atherosclerosis, and only their closure will bring us closer to understanding the causes of the disease at the cellular and molecular levels and, accordingly, to the development of an effective treatment. One of the seemingly well-studied elements of atherogenesis is the mTOR signaling pathway. However, more and more new details are still being clarified. Therapeutic strategies associated with rapamycin have worked well in a number of different diseases, and there is every reason to believe that targeting components of the mTOR pathway may pay off in atherosclerosis as well.  相似文献   
8.
The local development of atherosclerotic lesions may, at least partly, be associated with the specific cellular composition of atherosclerosis-prone regions. Previously, it was demonstrated that a small population of immature vascular smooth muscle cells (VSMCs) expressing both CD146 and neuron-glial antigen 2 is postnatally sustained in atherosclerosis-prone sites. We supposed that these cells may be involved in atherogenesis and can continuously respond to angiotensin II, which is an atherogenic factor. Using immunohistochemistry, flow cytometry, wound migration assay xCELLigence system, and calcium imaging, we studied the functional activities of immature VSMCs in vitro and in vivo. According to our data, these cells do not express nestin, CD105, and the leptin receptor. They are localized in atherosclerosis-prone regions, and their number increases with age, from 5.7% to 23%. Immature VSMCs do not migrate to low shear stress areas and atherosclerotic lesions. They also do not have any unique response to angiotensin II. Thus, despite the localization of immature VSMCs and the presence of the link between their number and age, our study did not support the hypothesis that immature VSMCs are directly involved in the formation of atherosclerotic lesions. Additional lineage tracing studies can clarify the fate of these cells during atherogenesis.  相似文献   
9.
Distribution of different types of atherosclerotic lesions in the arterial wall is not diffuse, but is characterized by mosaicism. The causes of such distribution remain to be established. At the early stages of atherogenesis, low-density lipoprotein (LDL) particles and immune cells penetrate into the intimal layer of the arterial wall through the endothelium. In adult humans, the luminal surface of the arterial wall is a heterogeneous monolayer of cells with varying morphology including typical endothelial cells (ECs) and multinucleated variant endothelial cells (MVECs). We hypothesized that distribution of MVECs in the endothelial monolayer can be related to the distribution pattern of early atherosclerotic lesions. We obtained en face preparations of intact adult (22–59 years old) aortic wall sections that allowed us to study the endothelial monolayer and the subendothelial layer. We compared the distribution of MVECs in the endothelial monolayer with the localization of early atherosclerotic lesions in the subendothelial layer, which were characterized by lipid accumulation and immune cell recruitment. In primary culture, MVECs demonstrated increased phagocytic activity compared to mononuclear ECs. Moreover, we have shown that unaffected aortic intima contained associates formed as a result of aggregation and/or fusion of LDL particles that are non-randomly distributed. This indicated that MVECs may be involved in the accumulation of LDL in the subendothelial layer through increased transcytosis. Interaction of LDL with subendothelial cells of human aorta in primary culture increased their adhesive properties toward circulating immune cells. Study of unaffected aortic intima revealed non-random distribution of leukocytes in the subendothelial layer and increased localization of CD45+ leukocytes in the subendothelial layer adjacent to MVECs. Together, our observations indicate that MVECs may be responsible for the distribution of atherosclerotic lesions in the arterial wall by participating in LDL internalization and immune cell recruitment.  相似文献   
10.
The present study aims to compare the oxidative stress biomarkers, pro-inflammatory cytokines, and histological changes induced by three cardiovascular risk factors, namely, hypertension, dyslipidemia, and type 1 diabetes mellitus. Hypertension was induced with 40 mg/kg body weight (b.w.) of N omega-nitro-L-arginine-methyl (L-NAME) administered orally. Dyslipidemia was induced by the administration of a diet with a high cholesterol (2%) content. Diabetes mellitus was induced by intraperitoneal administration of a single dose of streptozocin (65 mg/kg). Malondialdehyde (MDA) and total oxidative status (TOS) are increased by all three cardiovascular risk factors (up to 207%). The indirect assessment of NO synthesis (NOx) is observed to be reduced after L-NAME administration (43%), and dyslipidemia induction (16%), while type 1 diabetes mellitus is associated with the highest levels of NOx (increased 112%). Hypertension, dyslipidemia, and type 1 diabetes reduced the total antioxidative capacity (TAC) and total thiol (SH) levels (up to 57%). The values of evaluated pro-inflammatory cytokines, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), assessed from the ascending aorta were elevated by all three cardiovascular risk factors, with the highest levels induced by type 1 diabetes mellitus (up to 259%). The histopathological examination of the ascending and descending aorta revealed reversible pro-atherogenic changes consisting of the accumulation of lipid droplets in the subendothelial connective tissue on rats with hypertension and dyslipidemia. Irreversible pro-atherogenic changes consisting of a reduction of the specific elasticity of the arteries were observed in rats with type 1 diabetes mellitus. Type 1 diabetes mellitus demonstrates an alteration of the oxidative stress parameters, the elevation of tissue levels of the pro-inflammatory cytokines and causing irreversible pro-atherogenic changes on the aortic wall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号