首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1262篇
  免费   357篇
  国内免费   121篇
电工技术   38篇
综合类   87篇
化学工业   516篇
金属工艺   220篇
机械仪表   79篇
建筑科学   24篇
矿业工程   23篇
能源动力   145篇
轻工业   112篇
水利工程   17篇
石油天然气   56篇
武器工业   22篇
无线电   81篇
一般工业技术   193篇
冶金工业   30篇
原子能技术   65篇
自动化技术   32篇
  2024年   12篇
  2023年   60篇
  2022年   60篇
  2021年   85篇
  2020年   91篇
  2019年   80篇
  2018年   93篇
  2017年   88篇
  2016年   82篇
  2015年   84篇
  2014年   99篇
  2013年   142篇
  2012年   82篇
  2011年   97篇
  2010年   46篇
  2009年   56篇
  2008年   53篇
  2007年   61篇
  2006年   51篇
  2005年   54篇
  2004年   50篇
  2003年   35篇
  2002年   19篇
  2001年   21篇
  2000年   21篇
  1999年   20篇
  1998年   12篇
  1997年   20篇
  1996年   18篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1985年   2篇
  1959年   2篇
  1951年   1篇
排序方式: 共有1740条查询结果,搜索用时 46 毫秒
1.
The capture of particles by charged droplets was simulated by considering the electrostatic interactions of droplet-droplet and droplet-particle. The results indicate that the electrostatic repulsion between droplets leads to a dynamic accumulation mode of particles. However, the droplet spacing has an insignificant effect on the capture efficiency when the electrostatic deposition predominates. The increase of droplet charge remarkably improves the capture efficiency, in which the capture of fine particles accounts for the largest proportion. Compared to the droplet charge, the droplet size shows a limited improvement in the capture efficiency. Reducing the droplet velocity prolongs the capture time instead of enhancing the capture capacity per unit time, thereby improving capture efficiency.  相似文献   
2.
魏庆宾 《人民长江》2015,46(10):77-82
大坝运行监测易受自然环境和监测条件影响,存在时间和空间上的变异性,监测数据具有不确定性。以云理论的随机性和不确定性分析方法为基础,并与空间数据辐射思想相结合,建立了云滴概率密度分布估计模型,然后导出云概率密度分布函数,依据样本监测数据推求母体空间数据的分布特征,并设计了基于逆向云算法云变换的计算程序。分析陆浑水库1979~1999年测压管监测数据和位移变形数据的云概率密度分布特征和云数字特征,得出了20 a来大坝的数据分布特征和运行状态。监测数据分析结果表明,云概率密度分布估计不仅能有效合理地分析大坝的运行状态,而且能够依据云数字特征来判断监测状态和监测环境的异常变化。   相似文献   
3.
The airborne dynamics of respiratory droplets, and the transmission routes of pathogens embedded within them, are governed primarily by the diameter of the particles. These particles are composed of the fluid which lines the respiratory tract, and is primarily mucins and salts, which will interact with the atmosphere and evaporate to reach an equilibrium diameter. Measuring organic volume fraction (OVF) of cough aerosol has proved challenging due to large variability and low material volume produced after coughing. Here, the diametric hygroscopic growth factors (GF) of the cough aerosol produced by healthy participants were measured in situ using a rotating aerosol suspension chamber and a humidification tandem differential mobility analyser. Using hygroscopicity models, it was estimated that the average OVF in the evaporated cough aerosol was 0.88 ± 0.07 and the average GF at 90% relative humidity (RH) was 1.31 ± 0.03. To reach equilibrium in dry air the droplets will reduce in diameter by a factor of approximately 2.8 with an evaporation factor of 0.36 ± 0.05. Hysteresis was observed in cough aerosol at RH = ∼35% and RH = ∼65% for efflorescence and deliquescence, respectively, and may depend on the OVF. The same behaviour and GF were observed in nebulized bovine bronchoalveolar lavage fluid.  相似文献   
4.
Liquid–liquid two‐phase epoxidation from cyclohexene and cyclooctene in aqueous potassium peroxymonosulfate (commercially available as Oxone®) solution was studied as an application in pollution prevention. To avoid potential emissions of volatile organic compounds an aqueous solution was employed to replace the usual chlorinated solvents used in epoxide production. A droplet column reactor and stirred tank reactor were used to investigate two‐phase synthesis of epoxide. An aqueous Oxone® solution was used to oxidize a dispersion of alkene droplets and form epoxide. The study of aqueous epoxidation in both reactors showed that the epoxidation of alkenes can be represented as a first order reaction with respect to alkene. The salting out effect of Oxone® concentration was studied in both reactors and found to be very similar at optimal conditions. In comparing the two reactors, it was found that the droplet column reactor produces larger quantities of product per unit reactor volume for the same reaction time. The objective of this study is to provide an alternative reactor design and synthesis route that can meet pollution prevention goals. Copyright © 2004 Society of Chemical Industry  相似文献   
5.
一种制备磁性粉末的新技术--均匀颗粒成型法   总被引:2,自引:0,他引:2  
采用均匀颗粒成型法(Uniform Dropler Spray-UDS)制备Fe基合金粉末,该方法制备的颗粒粒度分布均匀,性能一致,大大优于传统的粉末制备方法(如破碎法、气雾化),具有广阔的应用前景。本文分析了粉末制备过程中颗粒尺寸的影响因素,结果表明:颗粒的大小主要取决于坩埚底部小孔、坩埚内外气体压强差以及振荡频率三个独立变量。  相似文献   
6.
Thermal history and solute precipitation behavior of suspended solution droplets of sodium chloride (NaCl), magnesium sulphate (MgSO4), and zirconium hydroxychloride (ZrO(OH)Cl) evaporating at atmospheric and reduced pressures are studied. Experimental measurements on the variation of droplet diameter, solution concentration, and temperature during the evaporation period are presented and discussed. The results of solute precipitation behavior in solution droplets observed under an optical microscope are displayed and discussed. Results indicate that reducing the pressure (∼ 33 kPa) results in a change in the solution droplet evaporation rate, but the thermal histories of a particular solution droplet are similar at the atmospheric and reduced pressures. At atmospheric and reduced pressures used in this study, the d2 law for solution droplets is valid at early stages of the evaporation and before the solute precipitation initiates. Drying of MgSO4 and ZrO(OH)Cl solution droplets results in the formation of spherical particles, whereas drying of spherical NaCl solution droplets results in the formation of cubic particles.  相似文献   
7.
Hyun Kyu Suh 《Fuel》2008,87(6):925-932
This paper investigates the effect of injection parameters on the characteristics of dimethyl ether (DME) as an alternative fuel in a diesel engine with experimental and analytical models based on empirical equations. In order to study macroscopic and microscopic characteristics of DME fuel, this work focuses on the atomization characteristics of DME and compares experimental and predicted results for spray development obtained by empirical models for diesel and DME fuel. Detailed comparisons of spray tip penetration from three different empirical correlations and from visualization experiments of diesel and DME fuels were conducted under various fuel injection conditions. In comparison with the results of different empirical equations for measured spray tip penetration, the experimental results of this study provide good agreement with the calculation results based on empirical equations, except during the earliest stage of the injected spray sequence. The results of atomization characteristics indicate that DME showed better spray characteristics than conventional diesel fuel. Also, the fuel injection delay and maximum injection rate of DME fuel are shorter and lower than those of diesel fuel at the same injection conditions, respectively.  相似文献   
8.
Photographing impact of molten molybdenum particles in a plasma spray   总被引:1,自引:0,他引:1  
Plasma-sprayed molten molybdenum particles (∼40 μm in diameter) were photographed impinging at high velocity (∼140 m/s) on a glass substrate at room temperature. An optical sensor detected thermal radiation emitted by a droplet as it approached the substrate and activated a time delay unit. After a selected time interval, an Nd:YAG laser was triggered, emitting a 5 ns pulse that provided illumination for a charge-coupled device (CCD) camera to photograph the impacting droplet through a long-range microscope. By varying the delay before pulsing the laser, different stages of droplet deformation were recorded. Impacting droplets spread into a thin circular film that ruptured and broke into small fragments. An optical detector recording thermal radiation from the impacting droplet gave a signal that increased as the droplet spread out, reached a maximum when the liquid film began to rupture, and decreased as portions of the droplet recoiled because of surface tension and then flew out of view of the photodetector.  相似文献   
9.
基于单元变形的思路,由单元守恒方程出发,建立电场中液滴变形的数值计算模型. 在此基础上,将该模型与偶极模型相耦合,提出液滴聚结的计算方法. 由所建模型及计算方法,编制数值计算程序对几种参数下液滴的变形及聚结进行模拟计算. 结果表明,所建模型对液滴变形的预测与实验结果相符较好,对液滴聚结过程的模拟与实验结果大致相符,预测的聚结时间稍低于实验值. 如果进一步提高单元阻力的模化精度及单元离散精度,所建模型会有较好的适用性. 所建模型可实现对液滴的扁平形变形的预测. 研究结果对液滴电变形的理论分析及数值模拟具有一定的借鉴意义.  相似文献   
10.
Lipid droplets (LDs) have traditionally been thought of as solely lipid storage compartments for cells; however, in the last decade, they have emerged as critical organelles in health and disease. LDs are highly dynamic within cells, and their movement is critical in organelle–organelle interactions. Their dynamics are known to change during cellular stress or nutrient deprivation; however, their movement during pathogen infections, especially at very early timepoints, is under-researched. This study aimed to track LD dynamics in vitro, in an astrocytic model of infection. Cells were either stimulated with a dsRNA viral mimic, poly I:C, or infected with the RNA virus, Zika virus. Individual LDs within infected cells were analysed to determine displacement and speed, and average LD characteristics for multiple individual cells calculated. Both LD displacement and mean speed were significantly enhanced in stimulated cells over a time course of infection with an increase seen as early as 2 h post-infection. With the emerging role for LDs during innate host responses, understanding their dynamics is critical to elucidate how these organelles influence the outcome of viral infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号