首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   79篇
  国内免费   24篇
综合类   5篇
化学工业   462篇
金属工艺   2篇
机械仪表   95篇
建筑科学   3篇
轻工业   179篇
石油天然气   1篇
无线电   10篇
一般工业技术   18篇
冶金工业   4篇
原子能技术   5篇
自动化技术   176篇
  2023年   24篇
  2022年   122篇
  2021年   190篇
  2020年   60篇
  2019年   73篇
  2018年   33篇
  2017年   30篇
  2016年   40篇
  2015年   51篇
  2014年   36篇
  2013年   48篇
  2012年   35篇
  2011年   32篇
  2010年   40篇
  2009年   29篇
  2008年   21篇
  2007年   22篇
  2006年   20篇
  2005年   19篇
  2004年   12篇
  2003年   14篇
  2002年   3篇
  2001年   3篇
  1981年   1篇
  1980年   2篇
排序方式: 共有960条查询结果,搜索用时 109 毫秒
1.
The recent introduction of the Asian yellow-legged hornet, Vespa velutina, into Europe has raised concern regarding the threat to honeybees and the competition with the European hornet, Vespa crabro. The aim of this study was to investigated essential (Mg, Fe, Zn, Cu) and non-essential (Cd and Pb) elements in these two species. Element concentrations were determined in the whole body and separately in the head, thorax and abdomen using atomic absorption spectrometry (AAS). The changes in essential element concentration and speciation during metamorphosis were also studied using size exclusion chromatography followed by AAS and proteomic analysis. In both species, the essential elements were more concentrated in the abdomen due to the presence of fat bodies. Magnesium, Fe and Zn concentrations were significantly higher in V. crabro than in V. velutina and could have been related to the higher aerobic energy demand of the former species required to sustain foraging flight. Low concentrations of Cd and Pb were indicative of low environmental exposure. The concentration and speciation of essential elements, particularly Fe, varied among the developmental stages, indicating a modification of ligand preferences during metamorphosis. Overall, the results in the present study provide a better understanding of the hornet metal metabolism and a foundation for additional studies.  相似文献   
2.
The noninvasive sampling of dermal interstitial fluid (ISF) for the monitoring of clinical biomarkers is a greatly appealing area of research. The identification of molecular biomarkers in biological fluids has been accelerated with -omics analyses but remains limited in ISF because of its time-consuming and complex extraction process. Here, the generation of microneedle (MN) patches made of superabsorbent acrylate-based hydrogels for the rapid sampling of dermal ISF is described to explore its proteome. In depth, iterative optimization allows the identification of novel acrylate-based compositions with the required chemical, mechanical, and biocompatibility properties allowing proteomic analysis of the extracted ISF for the first time after sampling with swelling MNs. The generated MN arrays show no cytotoxic effect, successfully cross the stratum corneum, and can collect up to 6 µL of dermal ISF in 10 min in vivo. Proteomics lead to the detection of 176 clinically relevant biomarkers in the collected samples validating the use of ISF as a relevant bodily fluid for disease monitoring and diagnostic. Importantly, it is discovered that extraction fingerprint is strongly dependent on the MNs chemistry, and thus specific biomarkers could be selectively extracted by tuning the composition of the patch, making the system versatile and specific.  相似文献   
3.
Currently, the extracellular matrix (ECM) is considered a pivotal complex meshwork of macromolecules playing a plethora of biomolecular functions in health and disease beyond its commonly known mechanical role. Only by unraveling its composition can we leverage related tissue engineering and pharmacological efforts. Nevertheless, its unbiased proteomic identification still encounters some limitations mainly due to partial ECM enrichment by precipitation, sequential fractionation using unfriendly-mass spectrometry (MS) detergents, and resuspension with harsh reagents that need to be entirely removed prior to analysis. These methods can be technically challenging and labor-intensive, which affects the reproducibility of ECM identification and induces protein loss. Here, we present a simple new method applicable to tissue fragments of 10 mg and more. The technique has been validated on human ovarian tissue and involves a standardized procedure for sample processing with an MS-compatible detergent and combined centrifugation. This two-step protocol eliminates the need for laborious sample clarification and divides our samples into 2 fractions, soluble and insoluble, successively enriched with matrisome-associated (ECM-interacting) and core matrisome (structural ECM) proteins.  相似文献   
4.
本实验采用4D-非标记蛋白质组学技术研究秦川牛肉贮藏过程中(0~8 d)肌红蛋白含量及其衍生物的转化情况,阐释冷却秦川牛肉中肌红蛋白含量及其衍生物转化的分子机制。结果表明:贮藏过程中,肌红蛋白表达量在宰后0~4 d上升、4~8 d下降,利用非标记蛋白质组学技术鉴定出与肌红蛋白及其衍生物相关的差异蛋白14 种,具体包括代谢酶、氧化还原酶、过氧化物酶、伴侣蛋白4 类,这4 类蛋白的表达共同调控贮藏过程中肌红蛋白含量的变化及其3 种衍生物之间的转化,具体表现为贮藏过程中肌红蛋白表达量整体呈下降趋势,氧合肌红蛋白相对含量持续下降,脱氧肌红蛋白、高铁肌红蛋白相对含量逐渐增加,导致肉色发生褐变。本研究结果有利于理解秦川牛肉贮藏过程肉类变色的复杂生化变化机制。  相似文献   
5.
One-third of all proteins are estimated to require metals for structural stability and/or catalytic activity. Desthiobiotin probes containing metal binding groups can be used to capture metalloproteins with exposed active-site metals under mild conditions so as to prevent changes in metallation state. The proof-of-concept was demonstrated with carbonic anhydrase (CA), an open active site, Zn2+-containing protein. CA was targeted by using sulfonamide derivatives. Linkers of various lengths and structures were screened to determine the optimal structure for capture of the native protein. The optimized probes could selectively pull down CA from red blood cell lysate and other protein mixtures. Pull-down of differently metallated CAs was also investigated.  相似文献   
6.
The autonomic nervous system (ANS) plays a crucial role both in acute and chronic psychological stress eliciting changes in many local and systemic physiological and biochemical processes. Salivary secretion is also regulated by ANS. In this study, we explored salivary proteome changes produced in thirty-eight University students by a test stress, which simulated an oral exam. Students underwent a relaxation phase followed by the stress test during which an electrocardiogram was recorded. To evaluate the effect of an olfactory stimulus, half of the students were exposed to a pleasant odor diffused in the room throughout the whole session. Saliva samples were collected after the relaxation phase (T0) and the stress test (T1). State anxiety was also evaluated at T0 and T1. Salivary proteins were separated by two-dimensional electrophoresis, and patterns at different times were compared. Spots differentially expressed were trypsin digested and identified by mass spectrometry. Western blot analysis was used to validate proteomic results. Anxiety scores and heart rate changes indicated that the fake exam induced anxiety. Significant changes of α-amylase, polymeric immunoglobulin receptor (PIGR), and immunoglobulin α chain (IGHA) secretion were observed after the stress test was performed in the two conditions. Moreover, the presence of pleasant odor reduced the acute social stress affecting salivary proteome changes. Therefore, saliva proteomic analysis was a useful approach to evaluate the rapid responses associated to an acute stress test also highlighting known biomarkers.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号