首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24230篇
  免费   2011篇
  国内免费   1684篇
电工技术   1685篇
技术理论   2篇
综合类   2444篇
化学工业   3020篇
金属工艺   611篇
机械仪表   1438篇
建筑科学   2087篇
矿业工程   825篇
能源动力   1922篇
轻工业   1876篇
水利工程   795篇
石油天然气   1495篇
武器工业   306篇
无线电   2620篇
一般工业技术   2378篇
冶金工业   782篇
原子能技术   1963篇
自动化技术   1676篇
  2024年   71篇
  2023年   277篇
  2022年   615篇
  2021年   734篇
  2020年   656篇
  2019年   597篇
  2018年   503篇
  2017年   704篇
  2016年   838篇
  2015年   762篇
  2014年   1171篇
  2013年   1665篇
  2012年   1615篇
  2011年   1743篇
  2010年   1261篇
  2009年   1388篇
  2008年   1223篇
  2007年   1692篇
  2006年   1533篇
  2005年   1374篇
  2004年   1158篇
  2003年   1082篇
  2002年   874篇
  2001年   731篇
  2000年   625篇
  1999年   551篇
  1998年   444篇
  1997年   367篇
  1996年   310篇
  1995年   262篇
  1994年   195篇
  1993年   152篇
  1992年   148篇
  1991年   125篇
  1990年   95篇
  1989年   72篇
  1988年   77篇
  1987年   52篇
  1986年   33篇
  1985年   34篇
  1984年   27篇
  1983年   17篇
  1982年   21篇
  1981年   12篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1959年   12篇
  1956年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
2.
Three-dimensional Bödewadt flow (fluid rotates at a large enough distance from the stationary plate) of carbon nanomaterial is examined. Single walled and multi walled CNTs are dissolved in water and gasoline oil baseliquids. Darcy-Forchheimer porous medium is considered. Stationary disk is further stretched linearly in radial direction. Heat transfer effect is examined in presence of radiation and convection. Effect of viscous dissipation is accounted. Entropy generation rate is studied. By using adequate transformation (von Kármán relations), the flow field equations (PDEs) are transmitted into ODEs. Solutions to these ODEs are constructed via implementation of shooting method (bvp4c). In addition to Entropy generation rate, Bejan number, heat transfer rate (Nusselt number), skin friction and temperature of fluid are examined through involved physical parameters. Axial component of velocity intensifies with increment in nanoparticles volume fraction and ratio of stretching rate to angular velocity parameter while it decays with higher porosity parameter. Higher nanoparticles volume fraction and porosity parameter lead to decay in radial as well as tangential component of velocity. However it enhances with higher ratio of stretching rate to angular velocity parameter. Temperature of fluid directly varies with higher ratio of stretching rate to angular velocity parameter, radiation parameter, Eckert number, Biot number and nanoparticles volume fraction. Rate of Entropy generation is reduced with higher estimations of porosity parameter, nanoparticles volume fraction and radiation parameter. Skin friction coefficient decays with higher porosity parameter and ratio of stretching rate to angular velocity parameter. Intensification in porosity parameter, nanoparticles volume fraction and Biot number leads to higher Nusselt number. Prominent impact is shown by multiple-walled CNTs with gasoline oil basefluid than single-walled CNTs with water basefluid.  相似文献   
3.
The development of a high cooling power and high efficiency 4.2 K two stage G-M cryocooler is critically important given its broad applications in low temperature superconductors, MRI, infrared detector and cryogenic electronics. A high efficiency 1.5 W/4.2 K pneumatic-drive G-M cryocooler has recently been designed and developed by ARS. The effect of expansion volume rate and operation conditions on the cooling performance has been experimentally investigated. A typical cooling performance of 1.5 W/4.2 K has been achieved, and the minimum temperature of the second stage is 2.46 K. The steady input power of the compressor at 60 Hz is 6.8 kW, while the operation speed of the rotary valve is 30 rpm. A maximum cooling power of 1.75 W/4.2 K has been obtained in test runs.  相似文献   
4.
Radiophotoluminescence phenomena have been widely investigated on various types of materials for dosimetry applications. We report that an aluminoborosilicate glass containing 0.005 mol% copper exhibits intense photoluminescence in the visible region induced by X-ray and γ-ray irradiation. The luminescence is assigned to the 3d94s1 → 3d10 transition of Cu+. The proportionality of the intensity of the induced photoluminescence to the irradiation dose was confirmed up to 0.5 kGy using 60Co γ-ray irradiation. Based on the spectroscopic results, a potential mechanism was proposed for the enhancement of the photoluminescence. The exposure to the ionizing radiation generates electron-hole pairs in the glass, and the electrons are subsequently captured by the Cu2+ ions, which are converted to Cu+ and emit the luminescence. For the glass containing 0.01 mol% copper, the pronounced enhancement of the photoluminescence was not observed because the reverse reaction, ie, the capture of the holes by the Cu+ ions, becomes prominent. The photoluminescence induced by the irradiation was stably observed for the glasses kept at room temperature and even for the glasses heat-treated at 150°C. However, the induced photoluminescence could be eliminated by the heat treatment at a temperature at 500°C, and the glass returned to the initial pre-irradiation state. The Cu-doped aluminoborosilicate glass is a potential candidate for use in dosimetry applications.  相似文献   
5.
In this article, two novel kinds of focusing elements as reflectors are analyzed and compared. One is the grooved Fresnel zone plate reflector with continuous phase‐correcting. The other called subzone paraboloid reflector, has the profile that consists of a series of paraboloids. Their diffraction efficiencies and bandwidths are described. The two elements still preserve the advantages of Fresnel zone plates, namely, low profile, high efficiency, and simple fabrication. Two dual‐reflector antennas using the proposed focusing elements as the main reflectors are simulated and the results show that these antennas have good radiation performances. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:101–108, 2015.  相似文献   
6.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
7.
This paper proposes an event-triggered distributed receding horizon control (DRHC) approach for the formation and tracking problems of homogeneous multi-agent systems. For each agent, an event-triggering condition, based on assumed predictive information of the neighbours, is derived from stability analysis. Considering the uncertain deviation between the assumed and true predictive information, we design a time-varying compatibility constraint for the individual optimization problem. In the event-triggered DRHC algorithm, each agent solves the optimization problem and communicates with its neighbours only when the event-triggering condition is satisfied, so the communication and computation burden are reduced. Moreover, guarantees for the recursive feasibility and asymptotic stability of the overall system are proved. A simulation example is provided to illustrate effectiveness of the proposed approach.  相似文献   
8.
龚学鹏  卢启鹏 《仪器仪表学报》2015,36(10):2347-2354
为了保证上海光源X射线干涉光刻光束线的稳定性,减小热变形对实验结果的影响,对X射线干涉光刻光束线的3个关键光学元件——偏转镜、聚焦镜和精密四刀狭缝进行热-结构耦合分析。首先,计算偏转镜、聚焦镜和精密四刀狭缝所承载的功率密度;然后,建立其有限元模型;最后,获得光学元件的温度场和热变形的结果。结果表明,偏转镜和聚焦镜采用间接水冷方式可有效抑制热变形,冷却后的最大面形误差分别为7.2μrad和9.2μrad。精密四刀狭缝未冷却时,刀片组件温度介于271.56~273.27℃,刀口热变形为0.19 mm,直线导轨热变形为0.08 mm;经过铜辫子冷却后,刀片组件温度降至22.24~23.94℃,刀口热变形降至0.2μm,直线导轨热变形降至0.1μm;采用影像法和接触探头法测试后,刀口直线度、平行度和重复精度均满足技术要求。偏转镜、聚焦镜和精密四刀狭缝的热变形通过间接水冷和铜辫子的冷却方式可以得到很大程度的抑制,进而保证光斑质量。  相似文献   
9.
The modeling of solar radiation for forecasting its availability is a key tool for managing photovoltaic (PV) plants and, hence, is of primary importance for energy production in a smart grid scenario. However, the variability of the weather phenomena is an unavoidable obstacle in the prediction of the energy produced by the solar radiation conversion. The use of the data collected in the past can be useful to capture the daily and seasonal variability, while measurement of the recent past can be exploited to provide a short term prediction. It is well known that a good measurement of the solar radiation requires not only a high class radiometer, but also a correct management of the instrument. In order to reduce the cost related to the management of the monitoring apparatus, a solution could be to evaluate the PV plant performance using data collected by public weather station installed near the plant. In this paper, two experiments are conducted. In the first, the plausibility of the short term prediction of the solar radiation, based on data collected in the near past on the same site is investigated. In the second experiment, the same prediction is operated using data collected by a public weather station located at ten kilometers from the solar plant. Several prediction techniques belonging from both computational intelligence and statistical fields have been challenged in this task. In particular, Support Vector Machine for Regression, Extreme Learning Machine and Autoregressive models have been used and compared with the persistence and the k-NN predictors. The prediction accuracy achieved in the two experimental conditions are then compared and the results are discussed.  相似文献   
10.
Wax deposit properties are a significant concern in pipeline pigging during waxy crude oil transportation. In the present work, the impacts of flow conditions and oil properties on the wax precipitation characteristics of wax deposits are investigated. A flow loop apparatus was developed to conduct wax deposition experiments using four crude oils collected from different field pipes. The differential scanning calorimetry (DSC) technique was employed to observe the wax precipitation characteristics of crude oil and wax deposit. The results show that the wax content and the wax appearance temperature (WAT) of the deposits increase with shear stress and radial temperature gradient, and decrease with radial wax molecule concentration gradient near the pipe wall. The DSC tests on the wax deposits revealed that the deposit wax content is strongly correlated to the oil wax content. Furthermore, an empirical correlation was developed to predict the wax content and the WAT of the wax deposit. Verification of the empirical correlation using the different oils indicated that the average relative error of the wax content prediction and average absolute error of WAT prediction were 13.2% and 3.6°C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号