首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23496篇
  免费   2114篇
  国内免费   844篇
电工技术   8745篇
综合类   1474篇
化学工业   2350篇
金属工艺   459篇
机械仪表   1111篇
建筑科学   677篇
矿业工程   401篇
能源动力   3600篇
轻工业   647篇
水利工程   653篇
石油天然气   1497篇
武器工业   122篇
无线电   1276篇
一般工业技术   708篇
冶金工业   582篇
原子能技术   703篇
自动化技术   1449篇
  2024年   86篇
  2023年   243篇
  2022年   444篇
  2021年   583篇
  2020年   676篇
  2019年   492篇
  2018年   483篇
  2017年   638篇
  2016年   741篇
  2015年   806篇
  2014年   1583篇
  2013年   1353篇
  2012年   1874篇
  2011年   1902篇
  2010年   1397篇
  2009年   1359篇
  2008年   1310篇
  2007年   1738篇
  2006年   1476篇
  2005年   1250篇
  2004年   1034篇
  2003年   936篇
  2002年   783篇
  2001年   681篇
  2000年   617篇
  1999年   435篇
  1998年   280篇
  1997年   253篇
  1996年   205篇
  1995年   171篇
  1994年   131篇
  1993年   98篇
  1992年   96篇
  1991年   59篇
  1990年   45篇
  1989年   48篇
  1988年   26篇
  1987年   25篇
  1986年   12篇
  1985年   19篇
  1984年   15篇
  1983年   8篇
  1982年   13篇
  1981年   8篇
  1980年   8篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1959年   6篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(8):10852-10861
Carbon cloth was used as a flexible substrate for bismuth telluride (Bi2Te3) particles to provide flexibility and improve the overall thermoelectric performance. Bi2Te3 on carbon cloth (Bi2Te3/CC) was synthesized via a hydrothermal reaction with various reaction times. After over 12 h, the Bi2Te3 particles showed a clear hexagonal shape and were evenly adhered to the carbon cloth. Selenium (Se) atoms were doped into the Bi2Te3 structure to improve its thermoelectric performance. The electrical conductivity increased with increasing Se-dopant content until 40% Se was added. Moreover, the maximum power factor was 1300 μW/mK2 at 473 K for the 30% Se-doped sample. The carbon cloth substrate maintained its electrical resistivity and flexibility after 2000 bending cycles. A flexible thermoelectric generator (TEG) fabricated using the five pairs of 30% Se-doped sample showed an open-circuit voltage of 17.4 mV and maximum power output of 850 nW at temperature difference ΔT = 30 K. This work offers a promising approach for providing flexibility and improving the thermoelectric performance of inorganic thermoelectric materials for wearable device applications using flexible carbon cloth substrate for low temperature range application.  相似文献   
2.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
3.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
4.
Hydrogen is currently receiving significant attention as an alternative energy resource, and among the various methods for producing hydrogen, methanol steam reforming (MSR) has attracted great attention because of its economy and practicality. Because the MSR reaction is inherently activated over catalytic materials, studies have focused on the development of noble metal-based catalysts and the improvement of existing catalysts with respect to performance and stability. However, less attention has been paid to the modification and development of innovative MSR reactors to improve their performance and efficiency. Therefore, in this review paper, we summarize the trends in the development of MSR reactor systems, including microreactors and membrane reactors, as well as the various structured catalyst materials appropriate for application in complex reactors. In addition, other engineering approaches to achieve highly efficient MSR reactors for the production of hydrogen are discussed.  相似文献   
5.
This paper proposes a method for the coordinated control of power factor by means of a multiagent approach. The proposed multiagent system consists of two types of agent: single feeder agent (F_AG) and bus agent (B_AG). In the proposed system, an F_AG plays as an important role, which decides the power factors of all distributed generators by executing the load flow calculations repeatedly. The voltage control strategies are implemented as the class definition of Java into the system. In order to verify the performance of the proposed method, it has been applied to a typical distribution model system. The simulation results show that the system is able to control very violent fluctuation of the demands and the photovoltaic (PV) generations.  相似文献   
6.
This paper presents the stability improvement results of hybrid doubly fed induction generator (DFIG)-based and permanent magnet generator (PMG)-based offshore wind farms (OWFs) using a static synchronous series compensator (SSSC). An adaptive-network-based fuzzy inference system (ANFIS) controller of the proposed SSSC is designed to render adequate damping characteristics to the studied system. A frequency-domain approach based on a linearized system model using eigenvalue technique analysis is performed. A time-domain scheme based on a nonlinear system model subject to a three-phase short circuit fault at infinite bus with variations in the signal transmission delays has also been investigated to compare the damping of the studied system in cases of with and without controller. The simulation results with MATLAB/SIMULINK toolbox have been presented. It can be concluded from the simulation results that the proposed SSSC joined with the designed ANFIS damping controller can offer adequate damping performance to the studied hybrid DFIG-based and PMG-based OWFs under severe disturbance.  相似文献   
7.
8.
Very high resolution inverse synthetic aperture radar (ISAR) imaging of fast rotating targets is a complicated task. There may be insufficient pulses or may introduce migration through range cells (MTRC) during the coherent processing interval (CPI) when we use the conventional range Doppler (RD) ISAR technique. With compressed sensing (CS) technique, we can achieve the high-resolution ISAR imaging of a target with limited number of pulses. Sparse representation based method can achieve the super resolution ISAR imaging of a target with a short CPI, during which the target rotates only a small angle and the range migration of the scatterers is small. However, traditional CS-based ISAR imaging method generally faced with the problem of basis mismatch, which may degrade the ISAR image. To achieve the high resolution ISAR imaging of fast rotating targets, this paper proposed a pattern-coupled sparse Bayesian learning method for multiple measurement vectors, i.e. the PC-MSBL algorithm. A multi-channel pattern-coupled hierarchical Gaussian prior is proposed to model the pattern dependencies among neighboring range cells and correct the MTRC problem. The expectation-maximization (EM) algorithm is used to infer the maximum a posterior (MAP) estimate of the hyperparameters. Simulation results validate the effectiveness and superiority of the proposed algorithm.  相似文献   
9.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
10.
Hierarchical-Beta zeolites have been hydrothermally synthesized by adding a new gemini organic surfactant. The used gemini surfactant play the role of a “pore-forming agents” on the mesoscale, on the same time, providing alkaline environment for the system. With this hierarchical Beta zeolite as the core support, we successfully prepared a shell layer of Ni-containing (22 wt%) petal-like core-shell-like catalyst and applied it to bioethanol steam reforming. At the reaction temperature of 350 °C–550 °C, the conversion rate of ethanol and the selectivity of hydrogen were always above 85% and 70%. After reaction of 100 h on stream at 400 °C, there were not obvious inactivation could be observed on NiNPs/OH-MBeta catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号