首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50843篇
  免费   2202篇
  国内免费   1605篇
电工技术   1730篇
技术理论   1篇
综合类   2546篇
化学工业   9625篇
金属工艺   5832篇
机械仪表   2260篇
建筑科学   1119篇
矿业工程   551篇
能源动力   1441篇
轻工业   2698篇
水利工程   191篇
石油天然气   856篇
武器工业   353篇
无线电   4977篇
一般工业技术   8929篇
冶金工业   1362篇
原子能技术   746篇
自动化技术   9433篇
  2024年   62篇
  2023年   424篇
  2022年   798篇
  2021年   1128篇
  2020年   777篇
  2019年   740篇
  2018年   693篇
  2017年   995篇
  2016年   1503篇
  2015年   2208篇
  2014年   2858篇
  2013年   2640篇
  2012年   2967篇
  2011年   4801篇
  2010年   3918篇
  2009年   4004篇
  2008年   3511篇
  2007年   3632篇
  2006年   3000篇
  2005年   2648篇
  2004年   2266篇
  2003年   2294篇
  2002年   1960篇
  2001年   1031篇
  2000年   823篇
  1999年   670篇
  1998年   483篇
  1997年   401篇
  1996年   302篇
  1995年   191篇
  1994年   188篇
  1993年   140篇
  1992年   128篇
  1991年   74篇
  1990年   78篇
  1989年   58篇
  1988年   35篇
  1987年   24篇
  1986年   31篇
  1985年   34篇
  1984年   27篇
  1983年   14篇
  1982年   17篇
  1981年   15篇
  1980年   16篇
  1979年   11篇
  1977年   6篇
  1974年   6篇
  1958年   2篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
High-purity mullite ceramics, promising engineering ceramics for high-temperature applications, were fabricated using transient liquid phase sintering to improve their high-temperature mechanical properties. Small amounts of ultrafine alumina or silica powders were uniformly mixed with the mullite precursor depending on the silica-alumina ratio of the resulting ceramics to allow for the formation of a transient liquid phase during sintering, thus, enhancing densification at the early stage of sintering and mullite formation by the reaction between additional alumina and the residual glassy phase (mullitization) at the final stage of sintering. The addition of alumina powder to the silica-rich mullite precursor resulted in a reaction between the glassy silica and alumina phases during sintering, thereby forming a mullite phase without inhibiting densification. The addition of fine silica powder to the mullite single-phase precursor led to densification with an abnormal grain growth of mullite, whereas some of the added silica remained as a glassy phase after sintering. The resulting mullite ceramics prepared using different powder compositions showed different sintering behaviors, depending on the amount of alumina added. Upon selecting an optimum process and the amount of alumina to be added, the pure mullite ceramics obtained via transient liquid phase sintering exhibited high density (approximately 99%) and excellent high-temperature flexural strength (approximately 320 MPa) at 1500 °C in air. These results clearly demonstrate that pure mullite ceramics fabricated via transient liquid phase sintering with compositions close to those of stoichiometric mullite could be a promising process for the fabrication of high-temperature structural ceramics used in an ambient atmosphere. The transient liquid phase sintering process proposed in this study could be a powerful processing tool that allows for the preparation of superior high-temperature structural ceramics used in the ambient processing atmosphere.  相似文献   
2.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
3.
《Ceramics International》2022,48(15):21483-21491
To battle the high open-circuit voltage deficit (VOC,def) in kesterite (Cu2ZnSnS4 or CZTS) solar cells, a current field of research relates to point defect engineering by cation substitution. For example, by partly replacing Cu with an element of a larger ionic radius, such as Ag, the degree of Cu/Zn disorder decreases, and likewise does the associated band tailing. In this paper, solution-processed (Ag1-xCux)2ZnSnS4 (ACZTS) samples are prepared through the aprotic molecular ink approach using DMSO as the solvent. The successful incorporation of silver into the CZTS lattice is demonstrated with relatively high silver concentrations, namely Ag/(Ag+Cu) ratios of 13% and 26%. The best device was made with 13% Ag/(Ag+Cu) and had an efficiency of 4.9%. The samples are compared to the pure CZTS sample in terms of microstructure, phase distribution, photoluminescence, and device performance. In the XRD patterns, a decrease in the lattice parameter c/a ratio is observed for ACZTS, as well as significant peak splitting with Ag addition for several of the characteristic kesterite XRD reflections. In addition to the improvement in efficiency, other advantageous effects of Ag-incorporation include enhanced grain growth and an increased band gap. A too high concentration of Ag leads to the formation of secondary phases such as SnS and Ag2S as detected by XRD.  相似文献   
4.
5.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
6.
7.
《Ceramics International》2022,48(12):16923-16932
This paper offers a new way of testing the ablation property of material under an oxyacetylene torch using a thin-blade specimen, which costs much less time to reach the maximum temperature and provides a harsh turbulence fluid field that's closer to reality. The thin-blade specimen experiences a higher turbulent intensity than the traditional disk-like specimen, leading to more efficient heat exchange. The fluid field simulation agrees with the testing results. In addition, we manage to synthesize the C/Cx-SiCy composites with the co-deposition chemical vapor infiltration (CVI) method. The C/Cx-SiCy composites exhibit a similar anti-ablation property as C/C composites and consist of enough SiC phase simultaneously, combining the advantages of both C/C composites and C/SiC composites. The thin-blade C/Cx-SiCy composites show a lower linear ablation rate (1.6 μm/s) than C/C composites (4.1 μm/s) and C/SiC composites (19.6 μm/s) during the oxyacetylene test. The glass layer formed on the surface of C/Cx-SiCy could cling to the bulk material instead of peeling off due to the high PyC content in the matrix could protect the SiO2 from blowing away.  相似文献   
8.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
9.
Maturity-onset diabetes of the young (MODY) type 2 is caused by heterozygous inactivating mutations in the gene encoding glucokinase (GCK), a pivotal enzyme for glucose homeostasis. In the pancreas GCK regulates insulin secretion, while in the liver it promotes glucose utilization and storage. We showed that silencing the Drosophila GCK orthologs Hex-A and Hex-C results in a MODY-2-like hyperglycemia. Targeted knock-down revealed that Hex-A is expressed in insulin producing cells (IPCs) whereas Hex-C is specifically expressed in the fat body. We showed that Hex-A is essential for insulin secretion and it is required for Hex-C expression. Reduced levels of either Hex-A or Hex-C resulted in chromosome aberrations (CABs), together with an increased production of advanced glycation end-products (AGEs) and reactive oxygen species (ROS). This result suggests that CABs, in GCK depleted cells, are likely due to hyperglycemia, which produces oxidative stress through AGE metabolism. In agreement with this hypothesis, treating GCK-depleted larvae with the antioxidant vitamin B6 rescued CABs, whereas the treatment with a B6 inhibitor enhanced genomic instability. Although MODY-2 rarely produces complications, our data revealed the possibility that MODY-2 impacts genome integrity.  相似文献   
10.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号