首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39595篇
  免费   4353篇
  国内免费   2954篇
电工技术   2783篇
技术理论   8篇
综合类   5528篇
化学工业   2957篇
金属工艺   935篇
机械仪表   2505篇
建筑科学   3617篇
矿业工程   1283篇
能源动力   1316篇
轻工业   596篇
水利工程   1120篇
石油天然气   937篇
武器工业   702篇
无线电   3618篇
一般工业技术   4931篇
冶金工业   2224篇
原子能技术   363篇
自动化技术   11479篇
  2024年   142篇
  2023年   660篇
  2022年   867篇
  2021年   1139篇
  2020年   1281篇
  2019年   1180篇
  2018年   1170篇
  2017年   1377篇
  2016年   1533篇
  2015年   1549篇
  2014年   2324篇
  2013年   2851篇
  2012年   2535篇
  2011年   2964篇
  2010年   2326篇
  2009年   2467篇
  2008年   2535篇
  2007年   2664篇
  2006年   2427篇
  2005年   2085篇
  2004年   1647篇
  2003年   1401篇
  2002年   1183篇
  2001年   934篇
  2000年   812篇
  1999年   701篇
  1998年   550篇
  1997年   487篇
  1996年   407篇
  1995年   400篇
  1994年   319篇
  1993年   276篇
  1992年   256篇
  1991年   186篇
  1990年   152篇
  1989年   174篇
  1988年   133篇
  1987年   65篇
  1986年   93篇
  1985年   70篇
  1984年   69篇
  1983年   49篇
  1982年   54篇
  1981年   43篇
  1980年   38篇
  1979年   32篇
  1978年   29篇
  1977年   27篇
  1964年   26篇
  1955年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
3.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
4.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
5.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
6.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
7.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
8.
Topic modeling is a popular analytical tool for evaluating data. Numerous methods of topic modeling have been developed which consider many kinds of relationships and restrictions within datasets; however, these methods are not frequently employed. Instead many researchers gravitate to Latent Dirichlet Analysis, which although flexible and adaptive, is not always suited for modeling more complex data relationships. We present different topic modeling approaches capable of dealing with correlation between topics, the changes of topics over time, as well as the ability to handle short texts such as encountered in social media or sparse text data. We also briefly review the algorithms which are used to optimize and infer parameters in topic modeling, which is essential to producing meaningful results regardless of method. We believe this review will encourage more diversity when performing topic modeling and help determine what topic modeling method best suits the user needs.  相似文献   
9.
With the emergence of distributed ledger technology (DLT), numerous practitioners and researchers have proclaimed its beneficial impact on supply chain transactions in the future. However, the vast majority of DLT initiatives are discontinued after a short period. With the full potential of DLT laying far down the road, especially managers in supply chain management (SCM) seek for short-term cost-saving effects of DLT in order to achieve long-term benefits of DLT in the future. However, the extant research has bypassed grounding long-term as well as short-term effects of DLT on supply chain transaction with empirical data. We address this shortcoming, following an abductive research approach and combining empirical data from a multiple case study design with the corresponding literature. Our study reveals that the effects of DLT on supply chain transactions are two-sided. We found six effects of DLT solutions that have a cost-reducing or cost avoidance impact on supply chain transactions. In addition, we found two effects that change the power distribution between buyers and suppliers in transactions and a single effect that reduces the dependency of supply chain transactions on third parties. While cost-reducing and avoidance as well as dependency-reducing effects are positive effects, the change in power distribution might come with disadvantages. With these findings, the paper provides the first empirical evidence of the impact of DLT on supply chain transactions, which will enable managers to improve their assessment of DLT usage in supply chains.  相似文献   
10.
In recent years, Internet of Things (IoT) devices are used for remote health monitoring. For remotely monitoring a patient, only the health information at different time points are not sufficient; predicted values of biomarkers (for some future time points) are also important. In this article, we propose a powerful statistical model for an efficient dynamic patient monitoring using wireless sensor nodes through Bayesian Learning (BL). We consider the setting where a set of correlated biomarkers are measured from a patient through wireless sensors, but the sensors only report the ordinal outcomes (say, good, fair, high, or very high) to the sink based on some prefixed thresholds. The challenge is to use the ordinal outcomes for monitoring and predicting the health status of the patient under consideration. We propose a linear mixed model where interbiomarker correlations and intrabiomarker dependence are modeled simultaneously. The estimated and the predicted values of the biomarkers are transferred over the internet so that health care providers and the family members of the patient can remotely monitor the patient. Extensive simulation studies are performed to assess practical usefulness of our proposed joint model, and the performance of the proposed joint model is compared to that of some other traditional models used in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号