首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
化学工业   8篇
金属工艺   1篇
建筑科学   2篇
能源动力   2篇
轻工业   7篇
无线电   1篇
自动化技术   3篇
  2020年   1篇
  2017年   2篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1999年   2篇
排序方式: 共有24条查询结果,搜索用时 14 毫秒
1.
The objective of this study was to identify candidate features derived from airborne laser scanner (ALS) data suitable to discriminate between coniferous and deciduous tree species. Both features related to structure and intensity were considered. The study was conducted on 197 Norway spruce and 180 birch trees (leaves on conditions) in a boreal forest reserve in Norway. The ALS sensor used was capable of recording multiple echoes. The point density was 6.6 m− 2. Laser echoes located within the vertical projection of the tree crowns, which were assumed to be circular and defined according to field measurements, were attributed to three categories: “first echoes of many”, “single echoes”, or “last echoes of many echoes”. They were denoted FIRST, SINGLE, and LAST, respectively. In tree species classification using ALS data features should be independent of tree heights. We found that many features were dependent on tree height and that this dependency influenced selection of candidate features. When we accounted for this dependency, it was revealed that FIRST and SINGLE echoes were located higher and LAST echoes lower in the birch crowns than in spruce crowns. The intensity features of the FIRST echoes differed more between species than corresponding features of the other echo categories. For the FIRST echoes the intensity values tended to be higher for birch than spruce. When using the various features for species classification, maximum overall classification accuracies of 77% and 73% were obtained for structural and intensity features, respectively. Combining candidate features related to structure and intensity resulted in an overall classification accuracy of 88%.  相似文献   
2.
Biomorphic silicon/silicon carbide ceramics from birch powder   总被引:1,自引:0,他引:1  
A novel process has been developed for the fabrication of biomorphic silicon/silicon carbide (Si/SiC) ceramics from birch powder. Fine birch powder was hot-pressed to obtain pre-templates, which were subsequently carbonized to acquire carbon templates, and these were then converted into biomorphic Si/SiC ceramics by liquid silicon infiltration at 1550 °C. The prepared ceramics are characterized by homogeneous microstructure, high density, and superior mechanical properties compared to biomorphic Si/SiC ceramics from birch blocks. Their maximum density has been measured as 3.01 g/cm3. The microstructure is similar to that of conventional reaction-bonded silicon carbide. The Vicker's hardness, flexural strength, elastic modulus, and fracture toughness of the biomorphic Si/SiC were 19.6 ± 2.2 GPa, 388 ± 36 MPa, 364 ± 22 GPa, and 3.5 ± 0.3 MPa m1/2, respectively. The outstanding mechanical properties of the biomorphic Si/SiC ceramics are assessed to derive from the improved uniform microstructure of the pre-templates made from birch powder.  相似文献   
3.
4.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   
5.
The leaf volatiles emitted from four nonhost tree species of Ips typographus, i.e. Betula pendula, B. pubescens, Populus tremula, and Sambucus nigra, were collected outdoors by headspace sampling in situ and analyzed by GC-MS. Three major classes of compounds, aliphatics [mainly green-leaf volatiles (GLVs)], monoterpenes, and sesquiterpenes, existed in all the deciduous tree species investigated. In June, when the bark beetles are searching in flight for host trees, GLVs mainly consisting of (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol were the dominant constituents in B. pendula and S. nigra. In B. pubescens and P. tremula, sesquiterpenes (and their derivatives) and monoterpenes made up the major part of whole volatile blends, respectively. Surprisingly, sesquiterpene alcohols and other oxides released from B. pubescens in considerable amounts were not found in the closely related species, B. pendula. By August, both the total volatiles and individual compounds significantly decreased, mainly due to the maturation of leaves, since the light intensity and temperatures during sampling were the same as in June. There were almost no volatiles detected from P. tremula and S. nigra leaves in August. The total emissions from these deciduous species were significantly different among the species, with B. pubescens releasing 5–10 times more than other species. Under the conditions of constant light intensity and humidity, emissions of both total volatiles and most individual components of severed B. pendula and S. nigra branches (with fresh leaves) increased according to a saturation curve from 16°C to 40°C. Ips typographus antennae responded strongly to green leaf alcohols: (Z)-3-hexen-1-ol, 1-hexanol, and (E)-2-hexen-1-ol, but not to aldehydes or acetates in GC-EAD analyses of B. pendula and B. pubescens leaf volatiles. No antennal responses to monoterpenes, sesquiterpenes, or sesquiterpene oxides were found. These three antennally active GLVs emitted from nonhost tree leaves might be indicators of a wrong habitat in the host selection of conifer bark beetles.  相似文献   
6.
Birch pollen allergy is predominantly caused by the major allergen Bet v 1 and can lead to crossreactions with homologous proteins in food. Two major cross-reactive food allergens are Dau c 1 from carrot and Api g 1 from celery, which have never been purified from their natural source. Here, we describe a non-denaturing purification method for obtaining natural Bet v 1, Dau c 1 and Api g 1, comprising of ammonium sulfate precipitation, hydrophobic interaction chromatography and size exclusion chromatography. This method resulted in 98-99% pure isoform mixtures for each allergen. Characterization of these isoform mixtures with Q-TOF MS/MS clearly showed earlier reported isoforms of Bet v 1, Dau c 1 and Api g 1, but also new isoforms. The presence of secondary structure in the three purified allergens was demonstrated via circular dichroism and showed high similarity. The immune reactivity of the natural allergens was compared with recombinant proteins by Western blot and ELISA and showed similar reactivity.  相似文献   
7.
Plant secondary chemistry is determined by both genetic and environmental factors, and large intraspecific variation in secondary chemistry has frequently been reported. The heritability of specific tree secondary metabolites is, however, mostly unknown. We tested the effect of plant genotype, environment, and ontogeny on the variation in shoot secondary chemistry of juvenile and mature European white birches (Betula pendula). Phenolic compounds and triterpenoids were analyzed in 30 naturally regenerated 20-year-old parental trees and micropropagated plantlets that originated from 14 of those same parental trees, planted at four growing sites. Most of the variation for phenolic compounds was explained by differences between parental trees, whereas triterpenoids had a high variation both between parental trees and within the canopy of individual tree. The effect of ontogeny was strong for some individual compounds. In mature trees, the amount of triterpenoids was less than 1 mg/g (DW), whereas the concentration in juvenile plantlets was up to 64 mg/g (DW). Clonal plantlets and parental trees were generally quite similar in their phenolic contents, but there were significant differences for all analyzed compounds among clones. Environment had no significant effect on the accumulation of some compounds, whereas for others, a significant environmental effect and/or significant genotype by environment interaction was found. These results suggest that birch shoot secondary chemistry is under strong genetic control and that the environmental effects depend on the studied chemical trait.  相似文献   
8.
9.
10.
Abstract Birch and grass pollen grains as well as pollen-derived small particles appear as potent allergens in the outdoor air during spring and summer. The occurrence of pollen allergens in indoor air, however, has not been studied in depth due to lack of suitable sampling and analytical methods. Herein, a recently reported “direct on sampling filter estimation” (DOSAFE) technique ( Acevedo et al., 1998 ) has been validated for quantification of pollen allergens in indoor air using two school rooms and two office rooms as experimental models. Using DOSAFE and polyclonal antibodies against water extracts of pollen from Betula pendula and Phleum pratense L, we found that indoor air of school and office rooms carried substantial amounts of pollen allergens, expressed as SQ units, predominantly occurring as particles with smaller diameters than the pollen grains. In one school room the indoor air birch pollen allergen concentrations increased from 242 to 403 SQ units/m3 over the sampling period although the corresponding outdoor air concentrations decreased from 350 to 90 SQ units/m3. Electrostatic air cleaning in one office room reduced its grass pollen allergen concentrations by more than 95% to 0.02–0.34 SQ units/m3 as compared to the control room.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号