首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40856篇
  免费   3248篇
  国内免费   3260篇
电工技术   3233篇
技术理论   5篇
综合类   2563篇
化学工业   2867篇
金属工艺   477篇
机械仪表   1700篇
建筑科学   1566篇
矿业工程   302篇
能源动力   1531篇
轻工业   559篇
水利工程   397篇
石油天然气   341篇
武器工业   194篇
无线电   2908篇
一般工业技术   3219篇
冶金工业   947篇
原子能技术   198篇
自动化技术   24357篇
  2024年   102篇
  2023年   616篇
  2022年   514篇
  2021年   801篇
  2020年   1068篇
  2019年   1141篇
  2018年   1080篇
  2017年   1436篇
  2016年   1564篇
  2015年   1402篇
  2014年   2395篇
  2013年   3635篇
  2012年   1972篇
  2011年   2557篇
  2010年   1841篇
  2009年   2392篇
  2008年   2336篇
  2007年   2316篇
  2006年   2065篇
  2005年   1823篇
  2004年   1527篇
  2003年   1455篇
  2002年   1317篇
  2001年   1047篇
  2000年   1055篇
  1999年   967篇
  1998年   861篇
  1997年   763篇
  1996年   698篇
  1995年   603篇
  1994年   553篇
  1993年   507篇
  1992年   394篇
  1991年   373篇
  1990年   295篇
  1989年   227篇
  1988年   194篇
  1987年   170篇
  1986年   143篇
  1985年   184篇
  1984年   187篇
  1983年   169篇
  1982年   148篇
  1981年   99篇
  1980年   71篇
  1979年   85篇
  1978年   61篇
  1977年   67篇
  1976年   19篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In a typical embedded CPU, large on-chip storage is critical to meet high performance requirements. However, the fast increasing size of the on-chip storage based on traditional SRAM cells makes the area cost and energy consumption unsustainable for future embedded applications. Replacing SRAM with DRAM on the CPU’s chip is generally considered not worthwhile because DRAM is not compatible with the common CMOS logic and requires additional processing steps beyond what is required for CMOS. However a special DRAM technology, Gain-Cell embedded-DRAM (GC-eDRAM)  [1], [2], [3] is logic compatible and retains some of the good properties of DRAM (small and low power). In this paper we evaluate the performance of a novel hybrid cache memory where the data array, generally populated with SRAM cells, is replaced with GC-eDRAM cells while the tag array continues to use SRAM cells. Our evaluation of this cache demonstrates that, compared to the conventional SRAM-based designs, our novel architecture exhibits comparable performance with less energy consumption and smaller silicon area, enabling the sustainable on-chip storage scaling for future embedded CPUs.  相似文献   
2.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
3.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
4.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
5.
Smartphones are a promising tool as student response systems (SRS) for interactive teaching due to their widespread diffusion. Here, the main purpose is to assess the efficacy of smartphone-based SRS in large classroom settings of undergraduate Thermodynamics, as representative of engineering courses requiring high-level cognitive skills for problem solving. Four sets of multiple-choice questions were presented during the course. Overall, the results refer to 1055 students between control and SRS classes, each corresponding to a3 years period.One of the main results of this work is the strong linear correlation between the average questionnaire score and the final exam grade (R2 = 0.91). A similar correlation, although with a lower value of R2, is already found in the first questionnaire, thus showing the SRS high predictive power of class performance. The results of this study provide guidance for a quantitative use of smartphone-based SRS in teaching basic disciplines. The SRS monitoring capability allows early detection of struggling students, thus paving the way to personalized tutoring and improved student engagement in active learning practices. This approach is especially important in emergency situations, such as the SARS-Cov-2 pandemic, when distance learning is widely adopted, and remote interactive tools are highly needed.  相似文献   
6.
《Ceramics International》2022,48(11):15043-15055
This work reports magnetic permeability and ammonia gas sensing characteristics of La3+ substituted Co–Zn nano ferrites possessing chemical formula Co0.7Zn0.3LaxFe2-2xO4 (x = 0–0.1) synthesized by a sol-gel route. Refinement of X-ray diffraction (XRD) patterns of the ferrite powders by the Rietveld technique has revealed the creation of single-phase spinel structure. The tenancy of constituent cations at tetrahedral/octahedral sites was obtained from the refinement of XRD. The crystallite sizes calculated from the W–H method vary from 20 to 24 nm. The scanning electron microscope (SEM) profiles of the ferrite samples were analyzed for the morphological details. The energy dispersive X-ray analysis (EDAX) patterns of the samples were obtained to test the elemental purity of the ferrites within their stoichiometry. The transmission electron microscope (TEM) image of the ferrite (x = 0.1) exhibits the spherical and oval shaped particles with a mean size of 20 nm. Fourier transform infra-red (FTIR) spectra were analyzed to confirm the superseding of La3+ cations at octahedral sites. The Brunauer-Emmett-Teller (BET) analysis of nitrogen adsorption-desorption isotherms of the ferrites was performed to investigate the porous structure and to determine the surface area of the nanocrystalline ferrites. The oxidation states of the constituent ions were confirmed by means of X-ray photoelectron spectroscopy (XPS). The complex permeability as a function of frequency was studied to explore the effects of structural parameters on the magnetic behaviour of the ferrites. Analysis of gas sensing properties of the ferrites have proved that the Co–Zn–La ferrite with controlled La composition can be utilized as an effective ammonia gas sensing material in commercial gas sensors.  相似文献   
7.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
8.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
9.
针对异构计算节点组成的大规模多状态计算系统的容错性能分析问题,提出了一种计算系统容错性能的评估方法。该方法采用自定义的两级容错性能形式化描述框架进行系统描述,通过构造多值决策图(Multi-value Decision Diagram,MDD)模型对系统进行容错性能建模,并基于构造的模型高效地计算出部件故障的条件下计算系统在特定性能水平上运行的概率,减少了计算的冗余性。实验结果表明,该方法在模型的大小和构建时间上均优于传统方法。该方法的提出将对系统操作员或程序设计者具有重要意义,使其确保系统适合预期应用。  相似文献   
10.
This paper deals with the problem of designing a robust static output feedback controller for polytopic systems. The current research that tackled this problem is mainly based on LMI method, which is conservative by nature. In this paper, a novel approach is proposed, which considers the design space of the controller parameters and iteratively partitions the space to small simplexes. Then, by assessing the stability in each simplex, the solution space for design parameters is directly determined. It has been theoretically proved that, if there exists a feasible solution in the design space, the algorithm can find it. To validate the result of the proposed approach, comparative simulation examples are given to illustrate the performance of the design methodology as compared to those of previous approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号