首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   2篇
自动化技术   1篇
  2017年   1篇
  2008年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
《Ceramics International》2017,43(4):3761-3768
Nanofibers of titania and composite nanofibers of titania and multiwall carbon nanotubes were synthesized by electrospinning using a sol-gel process combined with activated carbon nanotubes. The relationships of treatment temperature, carbon nanotube content on the crystal phase, fiber morphology, and electric properties are reported. It is found that the rutile phase becomes more prominent at low heat treatment temperatures with an increase of carbon content in nanofibers, be it for higher amount of carbon due to reducing atmosphere or due to an increase in MWCNT. Atmospheric control and lower heat treatment temperatures enable crystalline nanocomposite fibers of anatase where the level of rutile is below the detection limit of XRD or Raman spectroscopy. This work provides a new path to fabricate electrospun TiO2/MWCNT nanocomposite nanofibers with limited C-induced rutile phase.  相似文献   
2.
Electrospun nanofibers from a porous hollow tube   总被引:1,自引:0,他引:1  
J.S. Varabhas  D.H. Reneker 《Polymer》2008,49(19):4226-4229
Single electrospinning jets are known to have low production rates. A 0.1 m2 nonwoven mat containing 1 g of 100 nm fibers may take several days to create from a single jet. Inexpensive methods of higher production rates are needed for laboratory research applications. In this paper we present experimental results of many simultaneous electrospinning jets from the surface of tube having a porous wall. The pores in the wall are small and resist the flow of the polymer. Holes drilled half way into the wall of the tube provide points of reduced flow resistance. A polymer solution of 15 wt% polyvinylpyrrolidone (PVP) in ethanol is pushed by low air pressure of 1-2 kPa through the tube wall at the drilled holes. On the outer surface of the tube polymer drops form at the locations of the drilled holes. The solution is charged from 40 to 60 kV to electrospin the polymer. Multiple polymer jets launch from the tube surface and form fibers. A 13 cm long tube with 20 holes can produce 0.3-0.5 g/h of nanofiber. Production rates can easily be scaled by increasing the tube length and the number of holes.  相似文献   
3.
Poly(methyl methacrylate) (PMMA) nanofibers with different diameters were fabricated by electrospinning and their composites with polyaniline (PANI) were formed by virtue of in situ solution polymerization. The coaxial composite nanofibers so prepared were then transferred to the surface of a gold interdigitated electrode to construct a gas sensor. The structure and morphology of the PANI/PMMA composite fibers were characterized by UV–vis spectroscopy and scanning electron microscopy, which indicated that the coaxial nanofibres of PANI emeraldine salt and PMMA were successfully prepared. The electrical responses of the gas sensor based on the composite nanofibres towards triethylamine (TEA) vapors were investigated at room temperature. It was revealed that the sensor showed a sensing magnitude as high as 77 towards TEA vapor of 500 ppm. In addition, the responses were linear, reversible and reproducible towards TEA vapors ranging from 20 to 500 ppm. The diameters of the electrospun PMMA fibers had an effect on the sensing magnitude of the gas sensor, which is proposed to relate to the difference in the surface-to-volume ratio of the fibers. Furthermore, it was found that the concentration of doping acids only led to changes in resistance of the sensor, but could not affect its sensing characteristics. In contrast, the nature of the doping acids was determinative for the sensing magnitude of the sensor. The gas sensor with toluene sulfonic acid as the doping acid exhibited the highest sensing magnitude, which is explained by taking into account of the sensing mechanism and the interactions of doping acids with TEA vapor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号