首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   4篇
  国内免费   2篇
电工技术   4篇
综合类   1篇
化学工业   8篇
金属工艺   1篇
机械仪表   5篇
建筑科学   8篇
矿业工程   2篇
能源动力   3篇
轻工业   1篇
水利工程   1篇
石油天然气   1篇
无线电   15篇
一般工业技术   13篇
冶金工业   1篇
自动化技术   39篇
  2024年   1篇
  2023年   11篇
  2022年   6篇
  2021年   4篇
  2020年   8篇
  2019年   2篇
  2018年   3篇
  2017年   8篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
Fog computing has emerged to support the requirements of IoT applications that could not be met by today’s solutions. Different initiatives have been presented to drive the development of fog, and much work has been done to improve certain aspects. However, an in-depth analysis of the different solutions, detailing how they can be integrated and applied to meet specific requirements, is still required. In this work, we present a unified architectural model and a new taxonomy, by comparing a large number of solutions. Finally, we draw some conclusions and guidelines for the development of IoT applications based on fog.  相似文献   
2.
In this paper, we will present a technique for measuring visibility distances under foggy weather conditions using a camera mounted onboard a moving vehicle. Our research has focused in particular on the problem of detecting daytime fog and estimating visibility distances; thanks to these efforts, an original method has been developed, tested and patented. The approach consists of dynamically implementing Koschmieder's law. Our method enables computing the meteorological visibility distance, a measure defined by the International Commission on Illumination (CIE) as the distance beyond which a black object of an appropriate dimension is perceived with a contrast of less than 5%. Our proposed solution is an original one, featuring the advantage of utilizing a single camera and necessitating the presence of just the road and sky in the scene. As opposed to other methods that require the explicit extraction of the road, this method offers fewer constraints by virtue of being applicable with no more than the extraction of a homogeneous surface containing a portion of the road and sky within the image. This image preprocessing also serves to identify the level of compatibility of the processed image with the set of Koschmieder's model hypotheses. Nicolas Hautiére graduated from the École Nationale des Travaux Publics de l'État, France (2002). He received his M.S. and Ph.D. degree in computer vision, respectively, in 2002 and 2005 from Saint-Étienne University (France). From 2002, he is a researcher in the Laboratoire Central des Ponts et Chaussées (LCPC), Paris, France. His research interests include trafic engineering, computer vision, and pattern recognition. Jean-Philippe Tarel graduated from the École Nationale des Ponts et Chaussées, Paris, France (1991). He received his Ph.D. degree in Applied Mathematics from Paris IX-Dauphine University in 1996 and he was with the Institut National de Recherche en Informatique et Automatique (INRIA) from 1991 to 1996. From 1997 to 1998, he was a research associate at Brown University, USA. From 1999, he is a researcher in the Laboratoire Central des Ponts et Chaussées (LCPC), Paris, France, and from 2001 to 2003 in the INRIA. His research interests include computer vision, pattern recognition, and shape modeling. Jean Lavenant graduated from the École Nationale des Travaux Publics de l'État, Lyon, France (2001). He received the M.S. degree in Computer Vision from Jean Monnet university of Saint-Étienne in 2001. In 2001, he was a researcher in the Laboratoire Central des Ponts et Chaussées (LCPC). In 2002, he was a system engineer in Chicago (USA). He is currently an engineer for the french ministry of transports. Didier Aubert received the M.S. and Ph.D. degree, respectively, in 1985 and 1989 from the National Polytechnical Institut of Grenoble (INPG). From 1989--1990, he worked as a research scientist on the development of an automatic road following system for the NAVLAB at Carnegie Mellon University. From 1990–1994, he worked in the research department of a private company (ITMI). During this period he was the project leader of several projects dealing with computer vision. He is currently a researcher at INRETS since 1995 and works on Road traffic measurements, crowd monitoring, automated highway systems, and driving assistance systems for vehicles. He is an image processing expert for several companies, teaches at Universities (Paris VI, Paris XI, ENPC, ENST) and is at the editorial board of RTS (Research - Transport - Safety).  相似文献   
3.
Nowadays, Internet of things has become as an inevitable aspect of humans’ IT-based life. A huge number of geo-distributed IoT enabled devices such as smart phones, smart cameras, health care systems, vehicles, etc. are connected to the Internet and manage users’ applications. The IoT applications are generally time sensitive, so that giving them up to Cloud and receiving the response may violate their required deadline, due to distance between user device and centralized Cloud data center and consequently increasing network latency. Fog environment, as an intermediate layer between Cloud and IoT devices, brings a smaller scales of Cloud capabilities closer to user location. Processing real time applications in Fog layer helps more deadlines to be met. Although Fog computing enhances quality of service parameters, limited resources and power of Fog nodes is a challenge in processing applications. Furthermore, the network latency is still an issue for communications between applications’ services and between user device and Fog node, which seriously threatens deadline condition. Regarding to mentioned points, this paper proposes a 3-partite deadline-aware applications’ services placement optimization model in Fog environment which optimizes total power consumption, total resources wastage, and total network latency, simultaneously. The proposed model prioritizes applications in 3 levels based on their associated deadline, and then the model is solved using a parallel model of first fit decreasing and genetic algorithm combination. Simulations results indicates the superiority of proposed approach against counterpart algorithms in terms of reducing power consumption, resource wastage, network latency, and service rejection rate.  相似文献   
4.
With the recent developments in the Internet of Things (IoT), the amount of data collected has expanded tremendously, resulting in a higher demand for data storage, computational capacity, and real-time processing capabilities. Cloud computing has traditionally played an important role in establishing IoT. However, fog computing has recently emerged as a new field complementing cloud computing due to its enhanced mobility, location awareness, heterogeneity, scalability, low latency, and geographic distribution. However, IoT networks are vulnerable to unwanted assaults because of their open and shared nature. As a result, various fog computing-based security models that protect IoT networks have been developed. A distributed architecture based on an intrusion detection system (IDS) ensures that a dynamic, scalable IoT environment with the ability to disperse centralized tasks to local fog nodes and which successfully detects advanced malicious threats is available. In this study, we examined the time-related aspects of network traffic data. We presented an intrusion detection model based on a two-layered bidirectional long short-term memory (Bi-LSTM) with an attention mechanism for traffic data classification verified on the UNSW-NB15 benchmark dataset. We showed that the suggested model outperformed numerous leading-edge Network IDS that used machine learning models in terms of accuracy, precision, recall and F1 score.  相似文献   
5.
Internet of Things (IoT), one of the key research topics in recent years, together with concepts from Fog Computing, brings rapid advancements in Smart City, Monitoring Systems, industrial control, transportation and other fields. These applications require a reconfigurable sensor architecture that can span multiple scenarios, devices and use cases that allow storage, networking and computational resources to be efficiently used on the edge of the network. There are a number of platforms and gateway architectures that have been proposed to manage these components and enable application deployment. These approaches lack horizontal integration between multiple providers as well as higher order functionalities like load balancing and clustering. This is partly due to the strongly coupled nature of the deployed applications, a lack of abstraction of device communication layers as well as a lock-in for communication protocols. This limitation is a major obstacle for the development of a protocol agnostic application environment that allows for single application to be migrated and to work with multiple peripheral devices with varying protocols from different local gateways. This research looks at existing platforms and their shortcomings as well as proposes a messaging based modular gateway platform that enables clustering of gateways and the abstraction of peripheral communication protocol details. These novelties allow applications to send and receive messages regardless of their deployment location and destination device protocol, creating a more uniform development environment. Furthermore, it results in a more streamlined application development and testing while providing more efficient use of the gateway’s resources. Our evaluation of a prototype for the system shows the need for the migration of resources and the QoS advantages of such a system. The examined use case scenarios show that clustering proves to be an advantage in certain use cases as well as presenting the deployment of a larger testing and control environment through the platform.  相似文献   
6.
感应式水雾荷电及其捕尘效应的研究   总被引:3,自引:0,他引:3  
王静英 《金属矿山》1995,(12):24-28
本文阐述感应式水雾荷电的原理及结构要素,分析了荷电雾粒的捕尘机制,并指明感应式水雾荷电除尘器提高除尘效率的技术途径。  相似文献   
7.
The results of energy and exergy analyses of two biomass integrated steam injection cycles and combined power cycles are reported. Fog cooling, steam injection and adding steam turbine cycles to gas turbine cycles can enhance the performance of power generation systems. Even with its lower heat value, biomass can be substituted for fossil fuels. The performances of the cycles are assessed under the same conditions. The assessments show that the combined cycle has a higher efficiency at lower values of compressor pressure ratio but the steam injection plant is advantageous at higher pressure ratio values. The steam injection plant has a higher net power under the same conditions, while the exergy loss rate is higher for the combined cycle at all pressure ratios. But the exergy destruction rate is higher for the steam injection cycle at lower compressor pressure ratios, and for the combined cycle at higher pressure ratios.  相似文献   
8.
With modern e-healthcare developments, ambulatory healthcare has become a prominent requirement for physical or mental ailed, elderly, childhood people. One of the major challenges in such applications is timing and precision. A potential solution to this problem is the fog-assisted cloud computing architecture. The activity recognition task is performed with the hybrid advantages of deep learning and genetic algorithms. The video frames captured from vision cameras are subjected to the genetic change detection algorithm, which detects changes in activities of subsequent frames. Consequently, the deep learning algorithm recognizes the activity of the changed frame. This hybrid algorithm is run on top of fog-assisted cloud framework, fogbus and the performance measures including latency, execution time, arbitration time and jitter are observed. Empirical evaluations of the proposed model against three activity data sets shows that the proposed deep genetic algorithm exhibits higher accuracy in inferring human activities as compared to the state-of-the-art algorithms.  相似文献   
9.
10.
考虑雾无线接入网(Fog Radio Access Network,F-RAN)中的性能优化问题,提出一种基于深度神经网络(Deep Neural Network,DNN)的资源分配方案。该方案旨在通过资源分配策略来最大化经济频谱效率(Economical Spectral Efficiency,ESE)。为解决传统资源分配方案需要大量计算的问题,该方案借助神经网络模型,将ESE作为损失函数,使用更少的计算量来确定用户的波束赋形,从而实现实时处理。仿真结果表明,相比于基于传统凸优化功率分配方案或者是基于监督学习的CNN方法,所提出的方案的光谱效率(Spectral Efficiency,SE)和ESE的最大增益分别可以达到5%和20%。此外,该方案在执行时间上与CNN方案接近,明显优于传统算法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号