首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21794篇
  免费   581篇
  国内免费   513篇
电工技术   618篇
技术理论   2篇
综合类   760篇
化学工业   1523篇
金属工艺   1042篇
机械仪表   2578篇
建筑科学   4474篇
矿业工程   337篇
能源动力   724篇
轻工业   834篇
水利工程   259篇
石油天然气   394篇
武器工业   129篇
无线电   1510篇
一般工业技术   2285篇
冶金工业   532篇
原子能技术   206篇
自动化技术   4681篇
  2024年   26篇
  2023年   160篇
  2022年   236篇
  2021年   337篇
  2020年   364篇
  2019年   255篇
  2018年   268篇
  2017年   256篇
  2016年   480篇
  2015年   543篇
  2014年   1059篇
  2013年   1087篇
  2012年   1350篇
  2011年   1560篇
  2010年   1121篇
  2009年   1176篇
  2008年   1086篇
  2007年   1334篇
  2006年   1404篇
  2005年   1256篇
  2004年   1154篇
  2003年   1132篇
  2002年   959篇
  2001年   677篇
  2000年   648篇
  1999年   589篇
  1998年   470篇
  1997年   372篇
  1996年   329篇
  1995年   275篇
  1994年   205篇
  1993年   165篇
  1992年   138篇
  1991年   104篇
  1990年   75篇
  1989年   49篇
  1988年   48篇
  1987年   26篇
  1986年   18篇
  1985年   28篇
  1984年   26篇
  1983年   14篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1971年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
2.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
3.
The ability of landscape architectural projects to mitigate the worst effects of climate change will depend upon designed ecological systems. These systems will be built with plants. Despite the recognition of ecology as an essential driver of landscapes, the professionals of landscape architecture too often lack the knowledge and practical skills to create robust vegetative systems. New approaches and tools are required. This article outlines principles and methods for designing biodiverse plant systems for urban sites. Planting methods that increase species richness, functional diversity, and spatial complexity are emphasized as a way of developing more resilient plantings. Selecting species with similar evolutionary adaptions to stress, disturbance, and competition—as well as creating multi-layered compositions of diverse plant morphologies—allows designers to create compatible, long-lived plant mixes. To balance the increased visual complexity of diverse plant mixes, the article explores design techniques to make plantings more appealing to the public. The strategies explored here are based on the projects, experience, and research of Phyto Studio, a Washington, D.C. based studio. The methods build on work described in the author’s book, Planting in a Post-Wild World, an exploration of how to create designed plant communities.  相似文献   
4.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   
5.
6.
ABSTRACT

The digital age of the future is ‘not out there to be discovered’, but it needs to be ‘designed’. The design challenge has to address questions about how we want to live, work, and learn (as individuals and as communities) and what we value and appreciate, e.g.: reflecting on quality of life and creating inclusive societies. An overriding design trade-off for the digital age is whether new developments will increase the digital divide or will create more inclusive societies. Sustaining inclusive societies means allowing people of all ages and all abilities to exploit information technologies for personally meaningful activities. Meta-design fosters the design of socio-technical environments that end-user developers can modify and evolve at use time to improve their quality of life and favour their inclusion in the society. This paper describes three case studies in the domain of assistive technologies in which end users themselves cannot act as end-user developers, but someone else (e.g.: a caregiver or a clinician) must accept this role requiring multi-tiered architectures. The design trade-offs and requirements for meta-design identified in the context of the case studies and other researchers’ projects are described to inform the development of future socio-technical environments focused on social inclusion.  相似文献   
7.
In this paper, we investigate how adaptive operator selection techniques are able to efficiently manage the balance between exploration and exploitation in an evolutionary algorithm, when solving combinatorial optimization problems. We introduce new high level reactive search strategies based on a generic algorithm's controller that is able to schedule the basic variation operators of the evolutionary algorithm, according to the observed state of the search. Our experiments on SAT instances show that reactive search strategies improve the performance of the solving algorithm.  相似文献   
8.
In architectural design, surface shapes are commonly subject to geometric constraints imposed by material, fabrication or assembly. Rationalization algorithms can convert a freeform design into a form feasible for production, but often require design modifications that might not comply with the design intent. In addition, they only offer limited support for exploring alternative feasible shapes, due to the high complexity of the optimization algorithm.We address these shortcomings and present a computational framework for interactive shape exploration of discrete geometric structures in the context of freeform architectural design. Our method is formulated as a mesh optimization subject to shape constraints. Our formulation can enforce soft constraints and hard constraints at the same time, and handles equality constraints and inequality constraints in a unified way. We propose a novel numerical solver that splits the optimization into a sequence of simple subproblems that can be solved efficiently and accurately.Based on this algorithm, we develop a system that allows the user to explore designs satisfying geometric constraints. Our system offers full control over the exploration process, by providing direct access to the specification of the design space. At the same time, the complexity of the underlying optimization is hidden from the user, who communicates with the system through intuitive interfaces.  相似文献   
9.
This paper presents a stochastic performance modelling approach that can be used to optimise design and operational reliability of complex chemical engineering processes. The framework can be applied to processes comprising multiple units, including the cases where closed form process performance functions are unavailable or difficult to derive from first principles, which is often the case in practice. An interface that facilitates automated two-way communication between Matlab® and process simulation environment is used to generate large process responses. The resulting constrained optimisation problem is solved using both Monte Carlo Simulation (MCS) and First Order Reliability Method (FORM); providing a wide range of stochastic process performance measures. Adding such capabilities to traditional deterministic process simulators provides a more informed basis for selecting optimum design factors; giving a simple way of enhancing overall process reliability and cost-efficiency. Two case study systems are considered to highlight the applicability and benefits of the approach.  相似文献   
10.
This paper is the second one of the two papers entitled “Weighted Superposition Attraction (WSA) Algorithm”, which is about the performance evaluation of the WSA algorithm in solving the constrained global optimization problems. For this purpose, the well-known mechanical design optimization problems, design of a tension/compression coil spring, design of a pressure vessel, design of a welded beam and design of a speed reducer, are selected as test problems. Since all these problems were formulated as constrained global optimization problems, WSA algorithm requires a constraint handling method for tackling them. For this purpose we have selected 6 formerly developed constraint handling methods for adapting into WSA algorithm and analyze the effect of the used constraint handling method on the performance of the WSA algorithm. In other words, we have the aim of producing concluding remarks over the performance and robustness of the WSA algorithm through a set of computational study in solving the constrained global optimization problems. Computational study indicates the robustness and the effectiveness of the WSA in terms of obtained results, reached level of convergence and the capability of coping with the problems of premature convergence, trapping in a local optima and stagnation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号