首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
自动化技术   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The relative concentrations of different pigments within a leaf have significant physiological and spectral consequences. Photosynthesis, light use efficiency, mass and energy exchange, and stress response are dependent on relationships among an ensemble of pigments. This ensemble also determines the visible characteristics of a leaf, which can be measured remotely and used to quantify leaf biochemistry and structure. But current remote sensing approaches are limited in their ability to resolve individual pigments. This paper focuses on the incorporation of three pigments—chlorophyll a, chlorophyll b, and total carotenoids—into the LIBERTY leaf radiative transfer model to better understand relationships between leaf biochemical, biophysical, and spectral properties.Pinus ponderosa and Pinus jeffreyi needles were collected from three sites in the California Sierra Nevada. Hemispheric single-leaf visible reflectance and transmittance and concentrations of chlorophylls a and b and total carotenoids of fresh needles were measured. These data were input to the enhanced LIBERTY model to estimate optical and biochemical properties of pine needles. The enhanced model successfully estimated reflectance (RMSE = 0.0255, BIAS = 0.00477, RMS%E = 16.7%), had variable success estimating transmittance (RMSE = 0.0442, BIAS = 0.0294, RMS%E = 181%), and generated very good estimates of carotenoid concentrations (RMSE = 2.48 µg/cm2, BIAS = 0.143 µg/cm2, RMS%E = 20.4%), good estimates of chlorophyll a concentrations (RMSE = 10.7 µg/cm2, BIAS = − 0.992 µg/cm2, RMS%E = 21.1%), and fair estimates of chlorophyll b concentrations (RMSE = 7.49 µg/cm2, BIAS = − 2.12 µg/cm2, RMS%E = 43.7%). Overall root mean squared errors of reflectance, transmittance, and pigment concentration estimates were lower for the three-pigment model than for the single-pigment model. The algorithm to estimate three in vivo specific absorption coefficients is robust, although estimated values are distorted by inconsistencies in model biophysics. The capacity to invert the model from single-leaf reflectance and transmittance was added to the model so it could be coupled with vegetation canopy models to estimate canopy biochemistry from remotely sensed data.  相似文献   
2.
This investigation quantitatively links chlorophyll a + b (chl a b) concentration, a physiological marker of forest health condition, to hyperspectral observations of Jack Pine (Pinus banksiana), a dominant Boreal forest species. Compact Airborne Spectrographic Imager (CASI) observations, in the visible-near infrared domain, were acquired over eight selected Jack Pine sites, near Sudbury, Ontario, between June and September of 2001. Supplementing the airborne campaigns was concurrent on-site collection of foliage samples for laboratory spectral and chemical measurements. The study first connected needle-level optical properties with pigment concentration through the inversion of radiative transfer models, LIBERTY and PROSPECT. Next, a chlorophyll sensitive optical index (R750/R710), was “scaled-up” using SAILH, a turbid medium canopy model, to estimate total pigment content at the canopy-level. Due to the potential confounding effects of open canopy structure and foliage clumping, the analysis accordingly focused on high spatial resolution CASI imagery (1 m) to visually target tree crowns, while accounting for shadowed areas. Chl a b concentration estimation from airborne spectral data using coupled leaf and canopy models was shown to be feasible with a root mean square error of 5.3 μg/cm2, for a pigment range of 25.7 to 45.9 μg/cm2. Such predictive algorithms using airborne-level data provide the methodology to be potentially scaled-up to satellite-level hyperspectral platforms for large scale monitoring of vegetation productivity and forest stand condition.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号