首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
自动化技术   3篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space–time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBL-McRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multi-modal Human Action Database (MHAD).  相似文献   
2.
In this paper, we present a meta-cognitive sequential learning algorithm for a neuro-fuzzy inference system, referred to as, ‘Meta-Cognitive Neuro-Fuzzy Inference System’ (McFIS). McFIS has two components, viz., a cognitive component and a meta-cognitive component. The cognitive component employed is a Takagi–Sugeno–Kang type-0 neuro-fuzzy inference system. A self-regulatory learning mechanism that controls the learning process of the cognitive component, by deciding what-to-learn, when-to-learn and how-to-learn from sequential training data, forms the meta-cognitive component. McFIS realizes the above decision by employing sample deletion, sample reserve and sample learning strategy, respectively. The meta-cognitive component use the instantaneous error of the sample and spherical potential of the rule antecedents to select the best training strategy for the current sample. Also, in sample learning strategy, when a new rule is added the rule consequent is assigned such that the localization property of Gaussian rule is fully exploited. The performance of McFIS is evaluated on four regression and eight classification problems. The performance comparison shows the superior generalization performance of McFIS compared to existing algorithms.  相似文献   
3.
Many students enter college without the needed skills to be successful. Colleges and universities are seeking instructional interventions to address these needs. Various classes are leveraging web-based social media to provide new instructional technologies that will help students learn. This paper reports on two studies related to the potential of online social annotation for improving teaching and learning in second-semester Freshman English classes. The approach, referred to as the Social Annotation Model-Learning System (SAM-LS), combines various instructional strategies, team-based learning, and a social annotation computer-supported collaborative learning tool, HyLighter, to increase student engagement with selected essays and with classmates. SAM-LS stimulates students to actively monitor their thoughts and compare them to both peers and the instructor (or domain experts). Study 1 showed no significant difference between the SAM-LS approach and a control; however, results appear to be related to confounding factors. Study 2 showed that students achieve better outcomes on measures of reading comprehension and meta-cognitive skill, but not critical thinking, when SAM-LS activities include small team collaborations. The two studies suggest future directions for research and development of SAM-LS and the HyLighter tool.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号