首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2872篇
  免费   153篇
  国内免费   169篇
电工技术   103篇
综合类   109篇
化学工业   364篇
金属工艺   52篇
机械仪表   59篇
建筑科学   57篇
矿业工程   24篇
能源动力   136篇
轻工业   28篇
水利工程   13篇
石油天然气   17篇
武器工业   15篇
无线电   705篇
一般工业技术   564篇
冶金工业   21篇
原子能技术   44篇
自动化技术   883篇
  2024年   9篇
  2023年   32篇
  2022年   51篇
  2021年   71篇
  2020年   65篇
  2019年   69篇
  2018年   65篇
  2017年   81篇
  2016年   96篇
  2015年   80篇
  2014年   165篇
  2013年   186篇
  2012年   182篇
  2011年   236篇
  2010年   176篇
  2009年   215篇
  2008年   256篇
  2007年   179篇
  2006年   167篇
  2005年   105篇
  2004年   103篇
  2003年   81篇
  2002年   72篇
  2001年   51篇
  2000年   81篇
  1999年   39篇
  1998年   43篇
  1997年   43篇
  1996年   33篇
  1995年   27篇
  1994年   21篇
  1993年   23篇
  1992年   19篇
  1991年   19篇
  1990年   13篇
  1989年   13篇
  1988年   10篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1978年   1篇
  1971年   1篇
  1951年   1篇
排序方式: 共有3194条查询结果,搜索用时 31 毫秒
1.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
2.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
3.
Amino acid modified polyaspartic acids were evaluated as calcium-scale inhibitors. Feasibility of scale inhibition experiments was analyzed by molecular dynamics simulation and Gaussian optimization, and the scale inhibition mechanism was theoretically analyzed. Scale inhibition performance was studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, static scale inhibition experiments, and electrochemical performance testing, which provided an experimental basis for the molecular dynamics simulation. The experimental results showed that Arg-SA-PASP has better scale inhibition and corrosion inhibition performance than His-SA-PASP. The scale inhibition effect increased with increasing concentration. Electrochemical tests indicated that Arg-SA-PASP is an excellent scale and corrosion inhibitor.  相似文献   
4.
5.
6.
Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight.  相似文献   
7.
Combinatorial auction is a useful trade manner for transportation service procurements in e-marketplaces. To enhance the competition of combinatorial auction, a novel auction mechanism of two-round bidding with bundling optimization is proposed. As the recommended the auction mechanism, the shipper/auctioneer integrates the objects into several bundles based on the bidding results of first round auction. Then, carriers/bidders bid for the object bundles in second round. The bundling optimization is described as a multi-objective model with two criteria on price complementation and combination consistency. A Quantum Evolutionary Algorithm (QEA) with β-based rotation gate and the encoding scheme based on non-zero elements in complementary coefficient matrix is developed for the model solution. Comparing with a Contrast Genetic Algorithm, QEA can achieve better computational performances for small and middle size problems.  相似文献   
8.
In this work, we focus on the Ge nanoparticles (Ge-np) embedded ZnO multilayered thin films. Effects of reactive and nonreactive growth of ZnO layers on the rapid thermal annealing (RTA) induced formation of Ge-np have been specifically investigated. The samples were deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively on Si substrates. As-prepared thin film samples have been exposed to an ex-situ RTA at 600 °C for 60 s under forming gas atmosphere. Structural characterizations have been performed by X-ray Diffraction (XRD), Raman scattering, Secondary Ion Mass Spectroscopy (SIMS), and Scanning Electron Microscopy (SEM) techniques. It has been realized that reactive or nonreactive growth of ZnO layers significantly influences the morphology of the ZnO: Ge samples, most prominently the crystal structure of Ge-np. XRD and Raman analysis have revealed that while reactive growth results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive growth leads to the formation of only DC Ge-np upon RTA process. Formation of ST12 Ge-np has been discussed based on structural differences due to reactive and nonreactive growth of ZnO embedding layer.  相似文献   
9.
Over the last decade, narrow-band emitters have been recognized as key enablers for light emitting diodes (LEDs) backlights in liquid-crystal displays (LCDs) by competing with other display technologies. Today, efforts have been devoted to the exploration of narrow-band green/red luminescent materials with high quantum efficiency and excellent stability to optimize the performance of LED backlights. This review first presents an overview of the significant progress made in the development of narrow-band emitters used in LED backlights for LCDs with the emphasis on the versatile materials databases from doped phosphors to luminescent II–VI, III-V semiconductor quantum dots, and the recent halide perovskites nanocrystals and bulk metal halides. Subsequently, the correlation of structure-luminescence properties, and the device performance optimization of these emitters have been analyzed. The focus is placed on summarizing and comparing the remarkable examples of outdated and new narrow-band luminescent materials as potential candidates in LED backlights. Finally, the outlooks and challenges in discovering new narrow-band emitters have been proposed.  相似文献   
10.
An efficient method for preparation of semiconductor quantum rod films for robust lasing in a cylindrical microcavity is reported. A capillary tube, serving as the laser cavity, is filled with a solution of nanocrystals and irradiated with a series of intense nanosecond laser pulses to produce a nanocrystal film on the capillary surface. The films exhibit intense room‐temperature lasing in whispering‐gallery modes that develop at the film–capillary interface as corroborated from the spacing detected for the lasing modes. Good lasing stability is observed at moderate pump powers. The method was applied successfully to several quantum‐rod samples of various sizes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号