首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
金属工艺   2篇
机械仪表   2篇
建筑科学   1篇
无线电   1篇
一般工业技术   2篇
冶金工业   1篇
自动化技术   57篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   52篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1964年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
《Advanced Robotics》2013,27(5):499-517
We are developing a helper robot that carries out tasks ordered by users through speech. The robot needs a vision system to recognize the objects appearing in the orders. However, conventional vision systems cannot recognize objects in complex scenes. They may find many objects and cannot determine which is the target. This paper proposes a method of using a conversation with the user to solve this problem. The robot asks a question to which the user can easily answer and whose answer can efficiently reduce the number of candidate objects. It considers the characteristics of features used for object identification such as the ease for humans to specify them by word, generating a user-friendly and efficient sequence of questions. Experimental results show that the robot can detect target objects by asking the questions generated by the method.  相似文献   
2.
《Advanced Robotics》2013,27(5):521-532
A Small AUV Navigation System (SANS) is being developed at the Naval Postgraduate School. The SANS is an integrated GPS/inertial navigation system composed of low-cost, small-size components. It is designed to demonstrate the feasibility of using a low-cost inertial measurement unit to navigate between intermittent GPS fixes. This paper reports recent improvements to the SANS hardware, latest testing results and development of an asynchronous Kalman filter for improved position estimation.  相似文献   
3.
《Advanced Robotics》2013,27(3-4):351-370
This paper presents a novel underwater vehicle for port area inspection, which has various navigation modes (towed mode, autonomous mode and kite mode) to stand against fast and changeable sea currents. The property assures safe and reliable observation performance irrespective of current speed. Since in a port area sea currents are fast and complex, such a vehicle must be practical and useful for port area application. The unique point of the vehicle is the employment of an autonomous underwater vehicle (AUV) as a towed vehicle. In general, AUVs and towed vehicles are mutually contradictory. This paper describes the process of development to achieve the three different navigation modes. The system components and the results of computer simulations and towing tank tests to investigate the stability of the vehicle are presented. In addition, results of the first sea trial are also presented. These results show that the vehicle can navigate stably in the three different navigation modes.  相似文献   
4.
《Advanced Robotics》2013,27(5-6):555-581
In this paper we introduce a new family of navigation functions for robot navigation and obstacle avoidance. The method can be used for both path finding and real-time path planning. Each navigation function is composed of three parts: a proportionality term, a deviation function and a deviation constant. Deviation functions are time-varying functions satisfying certain conditions. These functions and parameters are updated in real-time to avoid collision with obstacles. Our strategy uses polar kinematics equations to model the navigation problem in terms of the range and direction between the robot and the goal. The obstacles are mapped to polar planes, and represented by the range and the direction from the robot or the final goal in polar coordinates. This representation gives a certain weight to the obstacles based on their relative position from the robot and facilitates the design of the navigation law. There exists an infinite number of navigation functions obtained by changing the proportionality constant, the deviation constant or the deviation function. This offers an infinite number of possibilities for the robot's path. Our navigation strategy is illustrated using an extensive simulation where different navigation parameters are used.  相似文献   
5.
《Advanced Robotics》2013,27(11):1257-1280
A system that enables continuous slip compensation for a Mars rover has been designed, implemented and field-tested. This system is composed of several components that allow the rover to accurately and continuously follow a designated path, compensate for slippage and reach intended goals in high-slip environments. These components include visual odometry, vehicle kinematics, a Kalman filter pose estimator and a slip-compensated path follower. Visual odometry tracks distinctive scene features in stereo imagery to estimate rover motion between successively acquired stereo image pairs. The kinematics for a rocker–bogie suspension system estimates vehicle motion by measuring wheel rates, and rocker, bogie and steering angles. The Kalman filter processes measurements from an inertial measurement unit and visual odometry. The filter estimate is then compared to the kinematic estimate to determine whether slippage has occurred, taking into account estimate uncertainties. If slippage is detected, the slip vector is calculated by differencing the current Kalman filter estimate from the kinematic estimate. This slip vector is then used to determine the necessary wheel velocities and steering angles to compensate for slip and follow the desired path.  相似文献   
6.
In this paper, we present a novel method for detecting partial symmetries in very large point clouds of 3D city scans. Unlike previous work, which has only been demonstrated on data sets of a few hundred megabytes maximum, our method scales to very large scenes: We map the detection problem to a nearest‐neighbour problem in a low‐dimensional feature space, and follow this with a cascade of tests for geometric clustering of potential matches. Our algorithm robustly handles noisy real‐world scanner data, obtaining a recognition performance comparable to that of state‐of‐the‐art methods. In practice, it scales linearly with scene size and achieves a high absolute throughput, processing half a terabyte of scanner data overnight on a dual socket commodity PC.  相似文献   
7.
Abstract

Manual underwater welding is usually time consuming, expensive and hard to perform because of the rigorous underwater environment. Automatic underwater welding can be performed faster at less cost and with higher quality. An automatic seam tracking system for underwater flux cored arc welding has been developed. It consists of a vision sensing module, a seam recognition module, a fuzzy controller (FC) and an X–Y travel platform. The vision sensing module can capture clear seam images during welding, successfully resolving the problem of welding arc interference during underwater flux cored arc welding. The seam recognition module filters, enhances and thresholds the seam images and then recognises the seam deviation angle with a three layer back propagation neural network. The FC outputs the control parameters according to the seam deviation angle and then controls the X–Y platform to drive the torch to the centre of the seam. In this study, three different welds were considered: a straight line, a kinked straight line and an S curved line. These welds were tracked real timely during underwater flux cored arc welding. The results show that this seam tracking system can meet the requirements of the automatic underwater flux cored arc welding.  相似文献   
8.
Abstract

Using laser scanning techniques, scanning lens rotating around a laser diode and a circular laser trajectory was projected onto the surface of a weldment to detect it. Furthermore, one novel vision sensor based on the circular laser is developed. The three-dimensional (3D), circular laser based seam location sensor is investigated. On the basis of the light path system, 3D calculation algorithm is brought forward and used to locate the welded joint. After image denoise, filter, segmentation and thinning, characteristic points of the welded joint could be detected real time using a proposed vision sensor and confirmed by real experiments of butt welded joints with I groove and V groove, and lap, and fillet and ramp welded joints. The results show that circular laser based vision sensor can be used in seam locating and its calculation precision meets the requirement of seam tracking.  相似文献   
9.
《Advanced Robotics》2013,27(5-6):627-652
In the preceding paper, a method for mobile robot navigation control based on discrimination of multiple artificial fields was introduced. In this second paper, the method is extended to robot formations. Experimental demonstrations are presented taking examples of four types of formations. The experiments cover formation initialization, maneuvering, obstacle avoidance and formation switching.  相似文献   
10.
《Advanced Robotics》2013,27(2-3):361-379
This paper deals with the problem of autonomous navigation of an unmanned air vehicle towards a moving ship. The ship is moving in the horizontal plane; however, its motion is not a priori known to the air vehicle. The control laws for the flight path angle and the heading angle of the air vehicle are based on the relative kinematics equations between the vehicle and the moving ship. The goal of the control law is to drive the vertical line of sight angle to zero, while the horizontal line of sight angle tracks the heading angle of the ship. This results in a decreasing range in both the horizontal and vertical planes. The kinematics equations under the control law are derived and our results are rigorously proven. Simulation of various scenarios is carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号