首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
自动化技术   1篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Many sorting algorithms have been studied in the past, but there are only a few algorithms that can effectively exploit both single‐instruction multiple‐data (SIMD) instructions and thread‐level parallelism. In this paper, we propose a new high‐performance sorting algorithm, called aligned‐access sort (AA‐sort), that exploits both the SIMD instructions and thread‐level parallelism available on today's multicore processors. Our algorithm consists of two phases, an in‐core sorting phase and an out‐of‐core merging phase. The in‐core sorting phase uses our new sorting algorithm that extends combsort to exploit SIMD instructions. The out‐of‐core algorithm is based on mergesort with our novel vectorized merging algorithm. Both phases can take advantage of SIMD instructions. The key to high performance is eliminating unaligned memory accesses that would reduce the effectiveness of SIMD instructions in both phases. We implemented and evaluated the AA‐sort on PowerPC 970MP and Cell Broadband Engine platforms. In summary, a sequential version of the AA‐sort using SIMD instructions outperformed IBM's optimized sequential sorting library by 1.8 times and bitonic mergesort using SIMD instructions by 3.3 times on PowerPC 970MP when sorting 32 million random 32‐bit integers. Also, a parallel version of AA‐sort demonstrated better scalability with increasing numbers of cores than a parallel version of bitonic mergesort on both platforms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号