首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   30篇
  国内免费   13篇
电工技术   1篇
综合类   9篇
化学工业   6篇
金属工艺   3篇
机械仪表   3篇
建筑科学   51篇
矿业工程   4篇
能源动力   2篇
轻工业   2篇
水利工程   90篇
无线电   18篇
一般工业技术   3篇
冶金工业   24篇
原子能技术   1篇
自动化技术   126篇
  2023年   6篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   13篇
  2018年   13篇
  2017年   13篇
  2016年   16篇
  2015年   15篇
  2014年   20篇
  2013年   15篇
  2012年   15篇
  2011年   21篇
  2010年   21篇
  2009年   17篇
  2008年   19篇
  2007年   28篇
  2006年   30篇
  2005年   11篇
  2004年   16篇
  2003年   12篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1986年   1篇
排序方式: 共有343条查询结果,搜索用时 31 毫秒
1.
A Generalised Additive Modelling (GAM) approach is applied to prediction of both particulate and dissolved nutrient concentrations in a wet-tropical river (the Fitzroy River, Queensland, Australia). In addition to covariant terms considered in previous work (i.e. flow, discounted flow and a rising-falling limb term), we considered several new potential covariates: meteorological and hydrological variables that are routinely monitored, available in near-real time, and were considered to have potential predictive power. Of the additional terms considered, only flows from three tributaries of the Fitzroy River (namely, the Nogoa, Comet and Isaac Rivers) were found to significantly improve the model. Inclusion of one or more of these additional flow terms greatly improved results for dissolved nitrogen and dissolved phosphorus concentrations, which were not otherwise amenable to prediction. In particular, the Nogoa sub-catchment, dominated by pasture for cattle, was found to be important in determining dissolved inorganic nitrogen and phosphorus concentrations reaching the river mouth. This insight may direct further research, including future refinement of processed-based catchment models. The GAMs described here are used to provide near real-time river boundary conditions for a complex coupled hydrodynamic and biogeochemical model of the Great Barrier Reef Lagoon, and can be coupled with a forecasting hydrological model to allow integrated forecasting simulations of the catchment to coast system.  相似文献   
2.
WRESTORE (Watershed Restoration Using Spatio-Temporal Optimization of Resources) is a web-based, participatory planning tool that can be used to engage with watershed stakeholder communities, and involve them in using science-based, human-guided, interactive simulation–optimization methods for designing potential conservation practices on their landscape. The underlying optimization algorithms, process simulation models, and interfaces allow users to not only spatially optimize the locations and types of new conservation practices based on quantifiable goals estimated by the dynamic simulation models, but also to include their personal subjective and/or unquantifiable criteria in the location and design of these practices. In this paper, we describe the software, interfaces, and architecture of WRESTORE, provide scenarios for implementing the WRESTORE tool in a watershed community's planning process, and discuss considerations for future developments.  相似文献   
3.
In the present study, Karso watershed of Hazaribagh, Jharkhand State, India was divided into 200 × 200 grid cells and average annual sediment yields were estimated for each grid cell of the watershed to identify the critical erosion prone areas of watershed for prioritization purpose. Average annual sediment yield data on grid basis was estimated using Universal Soil Loss Equation (USLE). In general, a major limitation in the use of hydrological models has been their inability to handle the large amounts of input data that describe the heterogeneity of the natural system. Remote sensing (RS) technology provides the vital spatial and temporal information on some of these parameters. A recent and emerging technology represented by Geographic Information System (GIS) was used as the tool to generate, manipulate and spatially organize disparate data for sediment yield modeling. Thus, the Arc Info 7.2 GIS software and RS (ERDAS IMAGINE 8.4 image processing software) provided spatial input data to the erosion model, while the USLE was used to predict the spatial distribution of the sediment yield on grid basis. The deviation of estimated sediment yield from the observed values in the range of 1.37 to 13.85 percent indicates accurate estimation of sediment yield from the watershed.  相似文献   
4.
Stakeholder involvement is essential to the development of a total maximum daily load (TMDL) and its implementation plan. A tool, beyond a simulation model, is needed to support the decision making process that requires negotiation and compromise among stakeholders. The decision support system (DSS) described herein has a TMDL module to calculate various combinations of point and nonpoint loads that can meet the water quality criteria. Its Consensus module allows stakeholders to formulate, evaluate, modify, and vote for alternatives. The DSS displays bar charts for pollution loads from various subwatersheds and attributes the nonpoint loads to land uses. The water quality consequence of the pollution loads is output in maps, which shows sections meeting criteria in green and those not in red. The DSS requires a front end effort of site specific adaptation and model calibration. An Internet-based stakeholder process was developed to allow more concerned citizens to participate in management decisions.  相似文献   
5.
The present paper describes a new algorithm to calculate the watershed transform through rain simulation of greyscale digital images by means of pixel arrowing. The efficiency of this method is based on limiting the necessary neighbouring operations to compute the transform to the outmost, and in the total number of scannings performed over the whole image. The experiments demonstrate that the proposed algorithm is able to significantly reduce the running time of the fastest known algorithm without involving any loss of efficiency.  相似文献   
6.
为实现对数字X光图像进行快速分割,提出一种针对直方图的包络特征进行处理的新方法.该方法采用分水岭算法对数字X光图像的直方图一维信号进行处理.首先计算出图像的直方图,然后对直方图进行形态学滤波,提取出直方图的包络.在此基础上对直方图的包络采用分水岭算法自动提取出最佳阈值.用提取出的阈值进行基于阈值的初步分割,然后进一步采用基于标记的分水岭算法对初步分割的二值图像作进一步分割.通过实验表明,采用该方法可以有效地分割大幅X光图像.  相似文献   
7.
陕北无定河流域土壤侵蚀与植被覆盖和降雨关系研究   总被引:1,自引:0,他引:1  
基于2000—2014年陕北无定河流域日降水、DEM、土壤类型、MODIS NDVI等数据,利用修正通用土壤流失方程(RUSLE)估算了流域土壤侵蚀情况,定量分析了植被覆盖和降雨在土壤侵蚀中的作用,结果表明:(1)无定河流域土壤侵蚀以微度侵蚀为主,平均占流域面积的88.35%,各土壤侵蚀等级面积比例随等级的升高而降低。2000—2014年微度侵蚀面积比例为下降趋势,轻度及以上等级面积比例均为上升趋势。(2)不考虑降雨因子影响时,无定河流域仍以微度侵蚀为主,且为增加趋势,而其他土壤侵蚀等级均为下降趋势。不考虑植被覆盖因子时,流域土壤侵蚀与模型计算结果的变化趋势基本一致。(3)植被覆盖对土壤侵蚀面积比例和变化速率的贡献率分别为13.67%和24.55%,而降雨作用达到86.33%和75.44%,表明降雨是流域土壤侵蚀的主要动力和控制因子,降雨变化主导着流域土壤侵蚀变化过程。  相似文献   
8.
Climate change, besides global warming, is expected to intensify the hydrological cycle, which can impact watershed nutrient yields and affect water quality in the receiving water bodies. The Mahabad Dam Reservoir in northwest Iran is a eutrophic reservoir due to excessive watershed nutrient input, which could be exacerbated due to climate change. In this regard, a holistic approach was employed by linking a climate model (CanESM2), watershed-scale model (SWAT), and reservoir water quality model (CE-QUAL-W2). The triple model investigates the cumulative climate change effects on hydrological parameters, watershed yields, and the reservoir’s water quality. The SDSM model downscaled the output of the climate model under moderate (RCP4.5) and extreme (RCP8.5) scenarios for the periods of 2021–2040 and 2041–2060. The impact of future climate conditions was investigated on the watershed runoff and total phosphorus (TP) load, and consequently, water quality status in the dam’s reservoir. The results of comparing future conditions (2021–2060) with observed present values under moderate to extreme climate scenarios showed a 4–7% temperature increase and a 6–11% precipitation decrease. Moreover, the SWAT model showed a 9–16% decline in streamflow and a 12–18% decline in the watershed TP load for the same comparative period. Finally, CE-QUAL-W2 model results showed a 3–8% increase in the reservoir water temperature and a 10–16% increase in TP concentration. It indicates that climate change would intensify the thermal stratification and eutrophication level in the reservoir, especially during the year’s warm months. This finding specifies an alarming condition that demands serious preventive and corrective measures.  相似文献   
9.
Selection of strategies that help reduce riverine inputs requires numerical models that accurately quantify hydrologic processes. While numerous models exist, information on how to evaluate and select the most robust models is limited. Toward this end, we developed a comprehensive approach that helps evaluate watershed models in their ability to simulate flow regimes critical to downstream ecosystem services. We demonstrated the method using the Soil and Water Assessment Tool (SWAT), the Hydrological Simulation Program–FORTRAN (HSPF) model, and Distributed Large Basin Runoff Model (DLBRM) applied to the Maumee River Basin (USA). The approach helped in identifying that each model simulated flows within acceptable ranges. However, each was limited in its ability to simulate flows triggered by extreme weather events, owing to algorithms not being optimized for such events and mismatched physiographic watershed conditions. Ultimately, we found HSPF to best predict river flow, whereas SWAT offered the most flexibility for evaluating agricultural management practices.  相似文献   
10.
Low agricultural productivity caused by soil degradation is a serious problem in the Ethiopian Highlands. Here, we report how differences in soil fertility management between farming systems, based either on enset (Ensete ventricosum) or on teff (Eragrostis tef) as the major crops, affect the extent of nutrient stocks, balances and ecosystem sustainability. We collected information on farmers’ resources and nutrient management practices from stratified randomly selected households in two watersheds in the Central Highlands of Ethiopia. In addition, we collected soil samples from each land use and calculated nutrient stocks, partial and full nutrient balances (N, P and K) for one cropping season. Our results show that farmers in the two farming systems manage their soils differently and that nutrient inputs were positively related to farmers’ wealth status. The watershed with the enset-based system had higher soil N and K stocks than the watershed with the teff-based system, while P stocks were not different. Management related N?and K fluxes were more negative in the teff-based system (?28 kg N ha?1 yr?1 and ?34 kg K ha?1 yr?1) than in the enset-based system (?6 kg N ha?1 yr?1 and ?14 kg K ha?1 yr?1) while P fluxes were almost neutral or slightly positive. Within the enset-based system, a strong redistribution of N, P and K took place from the meadows and cereals (negative balance) to enset (positive balances). Although in the teff-based system, N, P and K were redistributed from meadows, small cereals and pulses to maize, the latter still showed a negative nutrient balance. In contrast to nutrient balances at land use level, nutrient balances at the watershed scale masked contrasting areas within the system where nutrient oversupply and deficiencies occurred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号