首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28000篇
  免费   4077篇
  国内免费   1790篇
电工技术   4128篇
综合类   2005篇
化学工业   6464篇
金属工艺   1048篇
机械仪表   1170篇
建筑科学   1025篇
矿业工程   585篇
能源动力   913篇
轻工业   3823篇
水利工程   311篇
石油天然气   909篇
武器工业   234篇
无线电   2844篇
一般工业技术   3338篇
冶金工业   1803篇
原子能技术   274篇
自动化技术   2993篇
  2024年   200篇
  2023年   906篇
  2022年   1321篇
  2021年   1547篇
  2020年   1321篇
  2019年   1113篇
  2018年   1020篇
  2017年   1211篇
  2016年   1231篇
  2015年   1248篇
  2014年   1588篇
  2013年   1682篇
  2012年   1791篇
  2011年   1928篇
  2010年   1393篇
  2009年   1452篇
  2008年   1338篇
  2007年   1725篇
  2006年   1580篇
  2005年   1290篇
  2004年   1110篇
  2003年   984篇
  2002年   804篇
  2001年   709篇
  2000年   602篇
  1999年   486篇
  1998年   406篇
  1997年   309篇
  1996年   279篇
  1995年   226篇
  1994年   197篇
  1993年   159篇
  1992年   161篇
  1991年   103篇
  1990年   81篇
  1989年   60篇
  1988年   48篇
  1987年   35篇
  1986年   39篇
  1985年   39篇
  1984年   34篇
  1983年   22篇
  1982年   15篇
  1981年   9篇
  1980年   12篇
  1977年   7篇
  1976年   6篇
  1975年   9篇
  1974年   4篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
1.
2.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
3.
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.  相似文献   
4.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
5.
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.  相似文献   
6.
The existing analytical average bit error rate (ABER) expression of conventional generalised spatial modulation (CGSM) does not agree well with the Monte Carlo simulation results in the low signal‐to‐noise ratio (SNR) region. Hence, the first contribution of this paper is to derive a new and easy way to evaluate analytical ABER expression that improves the validation of the simulation results at low SNRs. Secondly, a novel system termed CGSM with enhanced spectral efficiency (CGSM‐ESE) is presented. This system is realised by applying a rotation angle to one of the two active transmit antennas. As a result, the overall spectral efficiency is increased by 1 bit/s/Hz when compared with the equivalent CGSM system. In order to validate the simulation results of CGSM‐ESE, the third contribution is to derive an analytical ABER expression. Finally, to improve the ABER performance of CGSM‐ESE, three link adaptation algorithms are developed. By assuming full knowledge of the channel at the receiver, the proposed algorithms select a subset of channel gain vector (CGV) pairs based on the Euclidean distance between all CGV pairs, CGV splitting, CGV amplitudes, or a combination of these.  相似文献   
7.
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.  相似文献   
8.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
9.
We explore the possibility of characterizing sperm cells without the need to stain them using spectral and fluorescence lifetime analyses after multi-photon excitation in an insect model. The autofluorescence emission spectrum of sperm of the common bedbug, Cimex lectularius, was consistent with the presence of flavins and NAD(P)H. The mean fluorescence lifetimes showed smaller variation in sperm extracted from the male (tau m, τm = 1.54–1.84 ns) than in that extracted from the female sperm storage organ (tau m, τm = 1.26–2.00 ns). The fluorescence lifetime histograms revealed four peaks. These peaks (0.18, 0.92, 2.50 and 3.80 ns) suggest the presence of NAD(P)H and flavins and show that sperm metabolism can be characterized using fluorescence lifetime imaging. The difference in fluorescence lifetime variation between the sexes is consistent with the notion that female animals alter the metabolism of sperm cells during storage. It is not consistent, however, with the idea that sperm metabolism represents a sexually selected character that provides females with information about the male genotype.  相似文献   
10.
Zinc (Zn), the second-most necessary trace element, is abundant in the human body. The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for various functions and metabolism. The uptake of Zn during its transport through the body is important for proper development of the three major accessory sex glands: the testis, epididymis, and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis, sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma during ejaculation, and it plays a significant role in sperm release and motility. During the maternal, labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in the range of 8–12 mg/day in developing countries during the maternal period. Globally, the dietary intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of 9.6–11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical evidence. The events and functions of Zn related to successful fertilization have been summarized in detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction, from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro fertilization (IVF) opens opportunities for future studies on reproductive biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号