首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1823篇
  免费   172篇
  国内免费   93篇
电工技术   99篇
综合类   135篇
化学工业   494篇
金属工艺   14篇
机械仪表   97篇
建筑科学   142篇
矿业工程   31篇
能源动力   12篇
轻工业   177篇
水利工程   27篇
石油天然气   38篇
无线电   163篇
一般工业技术   200篇
冶金工业   61篇
原子能技术   10篇
自动化技术   388篇
  2024年   6篇
  2023年   38篇
  2022年   144篇
  2021年   210篇
  2020年   72篇
  2019年   44篇
  2018年   56篇
  2017年   54篇
  2016年   67篇
  2015年   86篇
  2014年   125篇
  2013年   113篇
  2012年   100篇
  2011年   104篇
  2010年   82篇
  2009年   81篇
  2008年   77篇
  2007年   114篇
  2006年   70篇
  2005年   93篇
  2004年   64篇
  2003年   46篇
  2002年   51篇
  2001年   38篇
  2000年   20篇
  1999年   18篇
  1998年   16篇
  1997年   16篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   12篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1973年   2篇
  1965年   3篇
  1964年   1篇
  1963年   1篇
排序方式: 共有2088条查询结果,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
2.
Periodontitis is a chronic complex inflammatory disease associated with a destructive host immune response to microbial dysbiosis, leading to irreversible loss of tooth-supporting tissues. Regeneration of functional periodontal soft (periodontal ligament and gingiva) and hard tissue components (cementum and alveolar bone) to replace lost tissues is the ultimate goal of periodontal treatment, but clinically predictable treatments are lacking. Similarly, the identification of biomarkers that can be used to accurately diagnose periodontitis activity is lacking. A relatively novel category of molecules found in oral tissue, circular RNAs (circRNAs) are single-stranded endogenous, long, non-coding RNA molecules, with covalently circular-closed structures without a 5’ cap and a 3’ tail via non-classic backsplicing. Emerging research indicates that circRNAs are tissue and disease-specific expressed and have crucial regulatory functions in various diseases. CircRNAs can function as microRNA or RNA binding sites or can regulate mRNA. In this review, we explore the biogenesis and function of circRNAs in the context of the emerging role of circRNAs in periodontitis pathogenesis and the differentiation of periodontal cells. CircMAP3K11, circCDK8, circCDR1as, circ_0062491, and circ_0095812 are associated with pathological periodontitis tissues. Furthermore, circRNAs are expressed in periodontal cells in a cell-specific manner. They can function as microRNA sponges and can form circRNA–miRNA–mRNA networks during osteogenic differentiation for periodontal-tissue (or dental pulp)-derived progenitor cells.  相似文献   
3.
4.
Abstract

Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.  相似文献   
5.
Gastric cancer is still a leading cause of cancer-related mortality worldwide in spite of declining incidence. Gastric cancers are, essentially, adenocarcinomas and one of the strongest risk factors is still infection with Helicobacter pylori. Within the last years, it became clear that gastric self-renewal and carcinogenesis are intimately linked, particularly during chronic inflammatory conditions. Generally, gastric cancer is now regarded as a disease resulting from dysregulated differentiation of stem and progenitor cells, mainly due to an inflammatory environment. However, the situation in the stomach is rather complex, consisting of two types of gastric units which show bidirectional self-renewal from an unexpectedly large variety of progenitor/stem cell populations. As in many other tumors, cancer stem cells have also been characterized for gastric cancer. This review focuses on the various gastric epithelial stem cells, how they contribute to self-renewal and which routes are known to gastric adenocarcinomas, including their stem cells.  相似文献   
6.
一种PD雷达动目标模拟与微波测控系统   总被引:1,自引:0,他引:1  
介绍了一种基于PC/104总线,具有GPIB程控功能,采用无内部微波源体制,通过在雷达载频上调制多普勒频率模型目标速度信息,延迟雷达发射机触发脉冲模拟目标距离信息并具有微波功率精确定标与衰减功能的PD雷达动目标模拟与微波测控系统。  相似文献   
7.
In this paper we discuss the data structure and algorithms for the direct application of generalized Leibnitz rules to the numerical computation of partial derivatives in forward mode. The proposed data structure provides constant time access to the partial derivatives, which accelerates the automatic differentiation computations. The interaction among elements of the data structure is explained by several numerical examples. The paper contains analysis of the developed data structure and algorithms. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
9.
自适应密集预测的模型算法控制   总被引:1,自引:0,他引:1       下载免费PDF全文
本文中提出了一种新的预测控制策略:在一个模型采样周期内(本文中定义)进行数次预测控制。  相似文献   
10.
 In this paper, a new approach for powder cold compaction simulations is presented. A density-dependent plastic model within the framework of finite strain multiplicative hyperelastoplasticity is used to describe the highly nonlinear material behaviour; the Coulomb dry friction model is used to capture friction effects at die-powder contact; and an Arbitrary Lagrangian–Eulerian (ALE) formulation is used to avoid the (usual) excessive distortion of Lagrangian meshes caused by large mass fluxes. Several representative examples, involving structured and unstructured meshes are simulated. The results obtained agree with the experimental data and other numerical results reported in the literature. It is shown that, contrary to other Lagrangian and adaptive h-remeshing approaches recently reported for this type of problems, the present approach verifies the mass conservation principle with very low relative errors (less than 1% in all ALE examples and exactly in the pure Lagrangian examples). Moreover, thanks to the use of an ALE formulation and in contrast with other simulations, the presented density distributions do not present spurious oscillations. Received: 20 March 2002 / Accepted: 15 October 2002 The partial financial support of the Ministerio de Ciencia y Tecnología (grant number DPI 2001-2204) is gratefully acknowledged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号