首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2193篇
  免费   261篇
  国内免费   116篇
电工技术   19篇
综合类   163篇
化学工业   720篇
金属工艺   67篇
机械仪表   32篇
建筑科学   331篇
矿业工程   113篇
能源动力   47篇
轻工业   80篇
水利工程   56篇
石油天然气   46篇
武器工业   22篇
无线电   206篇
一般工业技术   573篇
冶金工业   11篇
原子能技术   18篇
自动化技术   66篇
  2024年   14篇
  2023年   130篇
  2022年   60篇
  2021年   185篇
  2020年   156篇
  2019年   131篇
  2018年   88篇
  2017年   96篇
  2016年   103篇
  2015年   97篇
  2014年   120篇
  2013年   137篇
  2012年   158篇
  2011年   171篇
  2010年   107篇
  2009年   133篇
  2008年   115篇
  2007年   119篇
  2006年   79篇
  2005年   82篇
  2004年   74篇
  2003年   66篇
  2002年   33篇
  2001年   24篇
  2000年   24篇
  1999年   15篇
  1998年   8篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1980年   2篇
  1951年   2篇
排序方式: 共有2570条查询结果,搜索用时 46 毫秒
1.
Gel state reactions offer new direction for the reactivity of the organic molecules or metal‐organic materials upon photoirradiation with shorter reaction times and high yields compared to solid and solution states. The restricted molecular movement among the molecules in the soft solids control the stereoselectivity of the photoproducts in the gel state reactions. To date, most of the strategies based on self‐assembly have been demonstrated in the solid state, in particular for [2+2] reactions of olefins and polymerization reactions of diacetylenes via 1,4 addition. The soft materials are of emerging materials in recent days given their many applicative day‐to‐day aspects. This review gives a glimpse of recent reports on pericyclic reactions in the gel state that are designed based on the self‐assembly concept. Also it highlights how such reactions accompany the physical changes in the structure of the gels and stereo controlled products with high yields.  相似文献   
2.
Self-assembled peptide hydrogels represent the realization of peptide nanotechnology into biomedical products. There is a continuous quest to identify the simplest building blocks and optimize their critical gelation concentration (CGC). Herein, a minimalistic, de novo dipeptide, Fmoc-Lys(Fmoc)-Asp, as an hydrogelator with the lowest CGC ever reported, almost fourfold lower as compared to that of a large hexadecapeptide previously described, is reported. The dipeptide self-assembles through an unusual and unprecedented two-step process as elucidated by solid-state NMR and molecular dynamics simulation. The hydrogel is cytocompatible and supports 2D/3D cell growth. Conductive composite gels composed of Fmoc-Lys(Fmoc)-Asp and a conductive polymer exhibit excellent DNA binding. Fmoc-Lys(Fmoc)-Asp exhibits the lowest CGC and highest mechanical properties when compared to a library of dipeptide analogues, thus validating the uniqueness of the molecular design which confers useful properties for various potential applications.  相似文献   
3.
The custom design of protein–dendron amphiphilic macromolecules is at the forefront of macromolecular engineering. Macromolecules with this architecture are very interesting because of their ability to self-assemble into various biomimetic nanoscopic structures. However, to date, there are no reports on this concept due to technical challenges associated with the chemical synthesis. Towards that end, herein, a new chemical methodology for the modular synthesis of a suite of monodisperse, facially amphiphilic, protein–dendron bioconjugates is reported. Benzyl ether dendrons of different generations (G1–G4) are coupled to monodisperse cetyl ethylene glycol to form macromolecular amphiphilic activity-based probes (AABPs) with a single protein reactive functionality. Micelle-assisted protein labeling technology is utilized for site-specific conjugation of macromolecular AABPs to globular proteins to make monodisperse, facially amphiphilic, protein–dendron bioconjugates. These biohybrid conjugates have the ability to self-assemble into supramolecular protein nanoassemblies. Self-assembly is primarily mediated by strong hydrophobic interactions of the benzyl ether dendron domain. The size, surface charge, and oligomeric state of protein nanoassemblies could be systematically tuned by choosing an appropriate dendron or protein of interest. This chemical method discloses a new way to custom-make monodisperse, facially amphiphilic, protein–dendron bioconjugates.  相似文献   
4.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
5.
介绍了表面活性剂的结构、性质以及分类,综述了阴离子表面活性剂、阳离子表面活性剂、两性离子表面活性剂、非离子表面活性剂的分子间弱相互作用。另外,简述了低聚型表面活性剂和其他新型表面活性剂的结构及应用。  相似文献   
6.
Photothermal therapy (PTT) has attracted great attention due to its noninvasive and effective use against cancer. Various photothermal agents (PTAs) including organic and inorganic PTAs have been developed in the last decades. Organic PTAs based on small-molecule dyes exhibit great potential for future clinical applications considering their good biocompatibility and easy chemical modification or functionalization. In this review, we discuss the recent progress of organic PTAs based on small-molecule dyes for enhanced PTT. We summarize the strategies to improve the light penetration of PTAs, methods to enhance their photothermal conversion efficiency, how to optimize PTAs’ delivery into deep tumors, and how to resist photobleaching under repeated laser irradiation. We hope that this review can rouse the interest of researchers in the field of PTAs based on small-molecule dyes and help them to fabricate next-generation PTAs for noninvasive cancer therapy.  相似文献   
7.
We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle–nanoparticle interactions to cluster–cluster interactions as opposed to feature–feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials.  相似文献   
8.
Perfluorocarbons, saturated carbon chains in which all the hydrogen atoms are replaced with fluorine, form a separate phase from both organic and aqueous solutions. Though perfluorinated compounds are not found in living systems, they can be used to modify biomolecules to confer orthogonal behavior within natural systems, such as improved stability, engineered assembly, and cell-permeability. Perfluorinated groups also provide handles for purification, mass spectrometry, and 19F NMR studies in complex environments. Herein, we describe how the unique properties of perfluorocarbons have been employed to understand and manipulate biological systems.  相似文献   
9.
Separation membranes with higher molecular weight cut-offs are needed to separate ions and small molecules from a mixed feed. The molecular sieving phenomenon can be utilized to separate smaller species with well-defined dimensions from a mixture. Here, the formation of freestanding polyimine nanofilms with thicknesses down to ≈14 nm synthesized via self-assembly of pre-synthesized imine oligomers is reported. Nanofilms are fabricated at the water–xylene interface followed by reversible condensation of polymerization according to the Pieranski theory. Polyimine nanofilm composite membranes are made via transferring the freestanding nanofilm onto ultrafiltration supports. High water permeance of 49.5 L m-2 h−1 bar−1 is achieved with a complete rejection of brilliant blue-R (BBR; molecular weight = 825 g mol−1) and no more than 10% rejection of monovalent and divalent salts. However, for a mixed feed of BBR dye and monovalent salt, the salt rejection is increased to ≈18%. Membranes are also capable of separating small dyes (e.g., methyl orange; MO; molecular weight = 327 g mol−1) from a mixed feed of BBR and MO. Considering a thickness of ≈14 nm and its separation efficiency, the present membrane has significance in separation processes.  相似文献   
10.
Control of self-assembling systems at the micro- and nano-scale provides new opportunities for the engineering of novel materials in a bottom-up fashion. These systems have several challenges associated with control including high-dimensional and stochastic nonlinear dynamics, limited sensors for real-time measurements, limited actuation for control, and kinetic trapping of the system in undesirable configurations. Three main strategies for addressing these challenges are described, which include particle design (active self-assembly), open-loop control, and closed-loop (feedback) control. The strategies are illustrated using a variety of examples such as the design of patchy and Janus particles, the toggling of magnetic fields to induce the crystallization of paramagnetic colloids, and high-throughput crystallization of organic compounds in nanoliter droplets. An outlook of the future research directions and the necessary technological advancements for control of micro- and nano-scale self-assembly is provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号