首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13233篇
  免费   1659篇
  国内免费   1167篇
电工技术   821篇
综合类   1057篇
化学工业   826篇
金属工艺   1105篇
机械仪表   491篇
建筑科学   445篇
矿业工程   126篇
能源动力   195篇
轻工业   239篇
水利工程   154篇
石油天然气   160篇
武器工业   95篇
无线电   1962篇
一般工业技术   1690篇
冶金工业   2413篇
原子能技术   181篇
自动化技术   4099篇
  2024年   85篇
  2023年   284篇
  2022年   445篇
  2021年   536篇
  2020年   459篇
  2019年   371篇
  2018年   308篇
  2017年   399篇
  2016年   414篇
  2015年   452篇
  2014年   612篇
  2013年   689篇
  2012年   768篇
  2011年   1120篇
  2010年   807篇
  2009年   875篇
  2008年   837篇
  2007年   883篇
  2006年   823篇
  2005年   809篇
  2004年   708篇
  2003年   604篇
  2002年   535篇
  2001年   424篇
  2000年   290篇
  1999年   211篇
  1998年   184篇
  1997年   186篇
  1996年   154篇
  1995年   139篇
  1994年   111篇
  1993年   102篇
  1992年   75篇
  1991年   43篇
  1990年   61篇
  1989年   46篇
  1988年   42篇
  1987年   9篇
  1986年   13篇
  1985年   19篇
  1984年   14篇
  1983年   9篇
  1981年   6篇
  1979年   6篇
  1977年   11篇
  1973年   6篇
  1966年   5篇
  1963年   5篇
  1961年   5篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
死亡风险预测指根据病人临床体征监测数据来预测未来一段时间的死亡风险。对于ICU病患,通过死亡风险预测可以有针对性地对病人做出临床诊断,以及合理安排有限的医疗资源。基于临床使用的MEWS和Glasgow昏迷评分量表,针对ICU病人临床监测的17项生理参数,提出一种基于多通道的ICU脑血管疾病死亡风险预测模型。引入多通道概念应用于BiLSTM模型,用于突出每个生理参数对死亡风险预测的作用。采用Attention机制用于提高模型预测精度。实验数据来自MIMIC [Ⅲ]数据库,从中提取3?080位脑血管疾病患者的16?260条记录用于此次研究,除了六组超参数实验之外,将所提模型与LSTM、Multichannel-BiLSTM、逻辑回归(logistic regression)和支持向量机(support vector machine, SVM)四种模型进行了对比分析,准确率Accuracy、灵敏度Sensitive、特异性Specificity、AUC-ROC和AUC-PRC作为评价指标,实验结果表明,所提模型性能优于其他模型,AUC值达到94.3%。  相似文献   
2.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
3.
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.  相似文献   
4.
中国石化海南炼油化工有限公司0.2 Mt/a C5/C6烷烃异构化装置以连续重整装置的拔头油为原料,使用NNI-1催化剂,采用一次通过流程,不设脱异戊烷塔和稳定塔,经设在连续重整装置内的脱丁烷塔稳定处理后作为汽油调合组分。该装置于2006年9月开工投产,截至2015年3月已连续运行3个周期。长周期运行分析结果表明:前两个周期中NNI-1催化剂具有较高的异构化活性及选择性,C5异构化率为60%左右,C6异构化率为80%左右,C6选择性为15%左右,产品辛烷值基本达到技术指标要求(RON≥78);而在第三周期运行中,催化剂积炭增加等原因导致其异构化活性及选择性降低,异构化产品辛烷值提升能力呈现逐步衰减的趋势,提高反应苛刻度已不能弥补催化剂活性下降造成的产品辛烷值降低。为保证装置长周期运行,建议择机停工对催化剂进行再生,或是直接换用与装置原料性质匹配的异构化催化剂。  相似文献   
5.
Besides entertainment, games have shown to have the potential to impact a broader variety of cognitive abilities. Research has consistently shown that several aspects in cognition such as visual short-memory, multitasking and spatial skills can be enhanced by game play. In a previous study, it was found that playing Monkey Tales, a game aimed at training arithmetic skills, helped second grade pupils to increase their accuracy in mental calculation as compared to paper exercises. In this follow up study we explore whether traditional methods and game training differ in terms of the cognitive processes that both are able to impact. We incorporated standardized measures of working memory and visuo-motor skills. Additionally, the mathematics game was modified and its contents extracted to allow precise comparison between the gaming and paper exercises condition. Thus each single math exercise, type of question (e.g., multiple choice), quantity and order was perfectly matched in the game training and the traditional training conditions. Gains in arithmetical performance, and self-reported measures of enjoyment were also investigated. We found some evidence suggesting that arithmetic performance enhancement induced by game play and paper exercises differ not only in terms of enjoyment but also of working memory capacity improvements.  相似文献   
6.
We investigated the resistive switching characteristics of a polystyrene:ZnO–graphene quantum dots system and its potential application in a one diode-one resistor architecture of an organic memory cell. The log–log IV plot and the temperature-variable IV measurements revealed that the switching mechanism in a low-current state is closely related to thermally activated transport. The turn-on process was induced by a space-charge-limited current mechanism resulted from the ZnO–graphene quantum dots acting as charge trap sites, and charge transfer through filamentary path. The memory device with a diode presented a ∼103 ION/IOFF ratio, stable endurance cycles (102 cycles) and retention times (104 s), and uniform cell-to-cell switching. The one diode-one resistor architecture can effectively reduce cross-talk issue and realize a cross bar array as large as ∼3 kbit in the readout margin estimation. Furthermore, a specific word was encoded using the standard ASCII character code.  相似文献   
7.
Traditional Multiple Empirical Kernel Learning (MEKL) expands the expressions of the sample and brings better classification ability by using different empirical kernels to map the original data space into multiple kernel spaces. To make MEKL suit for the imbalanced problems, this paper introduces a weight matrix and a regularization term into MEKL. The weight matrix assigns high misclassification cost to the minority samples to balanced misclassification cost between minority and majority class. The regularization term named Majority Projection (MP) is used to make the classification hyperplane fit the distribution shape of majority samples and enlarge the between-class distance of minority and majority class. The contributions of this work are: (i) assigning high cost to minority samples to deal with imbalanced problems, (ii) introducing a new regularization term to concern the property of data distribution, (iii) and modifying the original PAC-Bayes bound to test the error upper bound of MEKL-MP. Through analyzing the experimental results, the proposed MEKL-MP is well suited to the imbalanced problems and has lower generalization risk in accordance with the value of PAC-Bayes bound.  相似文献   
8.
For a better translation from treatment designs of schizophrenia to clinical efficiency, there is a crucial need to refine preclinical animal models. In order to consider the multifactorial nature of the disorder, a new mouse model associating three factors (genetic susceptibility—partial deletion of the MAP6 gene, early-life stress—maternal separation, and pharmacological treatment—chronic Δ-9-tetrahydrocannabinol during adolescence) has recently been described. While this model depicts a schizophrenia-like phenotype, the neurobiological correlates remain unknown. Synaptic transmission and functional plasticity of the CA1 hippocampal region of male and female 3-hit mice were therefore investigated using electrophysiological recordings on the hippocampus slice. While basal excitatory transmission remained unaffected, NMDA receptor (NMDAr)-mediated long-term potentiation (LTP) triggered by theta-burst (TBS) but not by high-frequency (HFS) stimulation was impaired in 3-hit mice. Isolated NMDAr activation was not affected or even increased in female 3-hit mice, revealing a sexual dimorphism. Considering that the regulation of LTP is more prone to inhibitory tone if triggered by TBS than by HFS, the weaker potentiation in 3-hit mice suggests a deficiency of intrinsic GABA regulatory mechanisms. Indeed, NMDAr activation was increased by GABAA receptor blockade in wild-type but not in 3-hit mice. This electrophysiological study highlights dysregulations of functional properties and plasticity in hippocampal networks of 3-hit mice, one of the mechanisms suspected to contribute to the pathophysiology of schizophrenia. It also shows differences between males and females, supporting the sexual dimorphism observed in the disorder. Combined with the previously reported study, the present data reinforce the face validity of the 3-hit model that will help to consider new therapeutic strategies for psychosis.  相似文献   
9.
10.
Today’s information technologies involve increasingly intelligent systems, which come at the cost of increasingly complex equipment. Modern monitoring systems collect multi-measuring-point and long-term data which make equipment health prediction a “big data” problem. It is difficult to extract information from such condition monitoring data to accurately estimate or predict health statuses. Deep learning is a powerful tool for big data processing that is widely utilized in image and speech recognition applications, and can also provide effective predictions in industrial processes. This paper proposes the Long Short-term Memory Integrating Principal Component Analysis based on Human Experience (HEPCA-LSTM), which uses operational time-series data for equipment health prognostics. Principal component analysis based on human experience is first conducted to extract condition parameters from the condition monitoring system. The long short-term memory (LSTM) framework is then constructed to predict the target status. Finally, a dynamic update of the prediction model with incoming data is performed at a certain interval to prevent any model misalignment caused by the drifting of relevant variables. The proposed model is validated on a practical case and found to outperform other prediction methods. It utilizes a powerful deep learning analysis method, the LSTM, to fully process big condition monitoring series data; it effectively extracts the features involved with human experience and takes dynamic updates into consideration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号