首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42065篇
  免费   4257篇
  国内免费   3214篇
电工技术   3875篇
技术理论   1篇
综合类   5230篇
化学工业   1121篇
金属工艺   1543篇
机械仪表   5165篇
建筑科学   1533篇
矿业工程   1084篇
能源动力   601篇
轻工业   560篇
水利工程   720篇
石油天然气   1116篇
武器工业   866篇
无线电   7229篇
一般工业技术   2750篇
冶金工业   803篇
原子能技术   335篇
自动化技术   15004篇
  2024年   110篇
  2023年   378篇
  2022年   743篇
  2021年   852篇
  2020年   1035篇
  2019年   808篇
  2018年   791篇
  2017年   1159篇
  2016年   1369篇
  2015年   1678篇
  2014年   2547篇
  2013年   2255篇
  2012年   3106篇
  2011年   3419篇
  2010年   2595篇
  2009年   2628篇
  2008年   2756篇
  2007年   3360篇
  2006年   2944篇
  2005年   2553篇
  2004年   2051篇
  2003年   1987篇
  2002年   1570篇
  2001年   1357篇
  2000年   1110篇
  1999年   812篇
  1998年   634篇
  1997年   564篇
  1996年   499篇
  1995年   399篇
  1994年   324篇
  1993年   255篇
  1992年   172篇
  1991年   125篇
  1990年   91篇
  1989年   107篇
  1988年   78篇
  1987年   51篇
  1986年   26篇
  1985年   28篇
  1984年   35篇
  1983年   40篇
  1982年   22篇
  1981年   23篇
  1980年   14篇
  1979年   12篇
  1978年   7篇
  1977年   18篇
  1976年   7篇
  1956年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The evaluation of the volumetric accuracy of a machine tool is an open challenge in the industry, and a wide variety of technical solutions are available in the market and at research level. All solutions have advantages and disadvantages concerning which errors can be measured, the achievable uncertainty, the ease of implementation, possibility of machine integration and automation, the equipment cost and the machine occupation time, and it is not always straightforward which option to choose for each application. The need to ensure accuracy during the whole lifetime of the machine and the availability of monitoring systems developed following the Industry 4.0 trend are pushing the development of measurement systems that can be integrated in the machine to perform semi-automatic verification procedures that can be performed frequently by the machine user to monitor the condition of the machine. Calibrated artefact based calibration and verification solutions have an advantage in this field over laser based solutions in terms of cost and feasibility of machine integration, but they need to be optimized for each machine and customer requirements to achieve the required calibration uncertainty and minimize machine occupation time.This paper introduces a digital twin-based methodology to simulate all relevant effects in an artefact-based machine tool calibration procedure, from the machine itself with its expected error ranges, to the artefact geometry and uncertainty, artefact positions in the workspace, probe uncertainty, compensation model, etc. By parameterizing all relevant variables in the design of the calibration procedure, this simulation methodology can be used to analyse the effect of each design variable on the error mapping uncertainty, which is of great help in adapting the procedure to each specific machine and user requirements. The simulation methodology and the analysis possibilities are illustrated by applying it on a 3-axis milling machine tool.  相似文献   
2.
A new method for the polygonal approximation is presented. The method is based on the search for break points through a context-free grammar, that accepts digital straight segments with loss of information, as well as the decrease in the error committed employing the comparison of a tolerable error. We present an application of our method to different sets of objects widely used, as well as a comparison of our results with the best results reported in the literature, proving that our method achieves better values of error criteria. Besides, a new way to find polygonal approximations, with context-free grammars to recognize digital straight segments without loss of pixels, it is also addressed.  相似文献   
3.
Software is a central component in the modern world and vastly affects the environment’s sustainability. The demand for energy and resource requirements is rising when producing hardware and software units. Literature study reveals that many studies focused on green hardware; however, limited efforts were made in the greenness of software products. Green software products are necessary to solve the issues and problems related to the long-term use of software, especially from a sustainability perspective. Without a proper mechanism for measuring the greenness of a particular software product executed in a specific environment, the mentioned benefits will not be attained. Currently, there are not enough works to address this problem, and the green status of software products is uncertain and unsure. This paper aims to identify the green measurements based on sustainable dimensions in a software product. The second objective is to reveal the relationships between the elements and measurements through empirical study. The study is conducted in two phases. The first phase is the theoretical phase, where the main components, measurements and practices that influence the sustainability of a software product are identified. The second phase is the empirical study that involved 103 respondents in Malaysia investigating current practices of green software in the industrial environment and further identifying the main sustainability dimensions and measurements and their impact on achieving green software products. This study has revealed seven green measurements of software product: Productivity, Usability, Cost Reduction, Employee Support, Energy Efficiency, Resource Efficiency and Tool Support. The relationships are statistically significant, with a significance level of less than 0.01 (p = 0.000). Thus, the hypothesised relationships were all accepted. The contributions of this study revolve around the research perspectives of the measurements to attain a green software product.  相似文献   
4.
刘影  孙凤丽  郭栋  张泽奇  杨隽 《测控技术》2020,39(12):111-115
针对软件缺陷预测时缺陷数据集中存在的类别分布不平衡问题,结合上采样算法SMOTE与Edited Nearest Neighbor (ENN) 数据清洗策略,提出了一种基于启发式BP神经网络算法的软件缺陷预测模型。模型中采用上采样算法SMOTE增加少数类样本以改善项目中的数据不平衡状况,并针对采样后数据噪声问题进行ENN数据清洗,结合基于启发式学习的模拟退火算法改进四层BP神经网络后建立分类预测模型,在AEEEM数据库上使用交叉验证对提出的方案进行性能评估,结果表明所提出的算法能够有效提高模型在预测类不平衡数据时的分类准确度。  相似文献   
5.
Number entry is a ubiquitous activity and is often performed in safety- and mission-critical procedures, such as healthcare, science, finance, aviation and in many other areas. We show that Monte Carlo methods can quickly and easily compare the reliability of different number entry systems. A surprising finding is that many common, widely used systems are defective, and induce unnecessary human error. We show that Monte Carlo methods enable designers to explore the implications of normal and unexpected operator behaviour, and to design systems to be more resilient to use error. We demonstrate novel designs with improved resilience, implying that the common problems identified and the errors they induce are avoidable.  相似文献   
6.
Quadrature spatial modulation (QSM) utilizes the in‐phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.  相似文献   
7.
ContextEnterprise software systems (e.g., enterprise resource planning software) are often deployed in different contexts (e.g., different organizations or different business units or branches of one organization). However, even though organizations, business units or branches have the same or similar business goals, they may differ in how they achieve these goals. Thus, many enterprise software systems are subject to variability and adapted depending on the context in which they are used.ObjectiveOur goal is to provide a snapshot of variability in large scale enterprise software systems. We aim at understanding the types of variability that occur in large industrial enterprise software systems. Furthermore, we aim at identifying how variability is handled in such systems.MethodWe performed an exploratory case study in two large software organizations, involving two large enterprise software systems. Data were collected through interviews and document analysis. Data were analyzed following a grounded theory approach.ResultsWe identified seven types of variability (e.g., functionality, infrastructure) and eight mechanisms to handle variability (e.g., add-ons, code switches).ConclusionsWe provide generic types for classifying variability in enterprise software systems, and reusable mechanisms for handling such variability. Some variability types and handling mechanisms for enterprise software systems found in the real world extend existing concepts and theories. Others confirm findings from previous research literature on variability in software in general and are therefore not specific to enterprise software systems. Our findings also offer a theoretical foundation for describing variability handling in practice. Future work needs to provide more evaluations of the theoretical foundations, and refine variability handling mechanisms into more detailed practices.  相似文献   
8.
We explore a truncation error criterion to steer adaptive step length refinement and coarsening in incremental-iterative path following procedures, applied to problems in large-deformation structural mechanics. Elaborating on ideas proposed by Bergan and collaborators in the 1970s, we first describe an easily computable scalar stiffness parameter whose sign and rate of change provide reliable information on the local behavior and complexity of the equilibrium path. We then derive a simple scaling law that adaptively adjusts the length of the next step based on the rate of change of the stiffness parameter at previous points on the path. We show that this scaling is equivalent to keeping a local truncation error constant in each step. We demonstrate with numerical examples that our adaptive method follows a path with a significantly reduced number of points compared to an analysis with uniform step length of the same fidelity level. A comparison with Abaqus illustrates that the truncation error criterion effectively concentrates points around the smallest-scale features of the path, which is generally not possible with automatic incrementation solely based on local convergence properties.  相似文献   
9.
Abstract

Model order reduction is a common practice to reduce large order systems so that their simulation and control become easy. Nonlinearity aware trajectory piecewise linear is a variation of trajectory piecewise linearization technique of order reduction that is used to reduce nonlinear systems. With this scheme, the reduced approximation of the system is generated by weighted sum of the linearized and reduced sub-models obtained at certain linearization points on the system trajectory. This scheme uses dynamically inspired weight assignment that makes the approximation nonlinearity aware. Just as weight assignment, the process of linearization points selection is also important for generating faithful approximations. This article uses a global maximum error controller based linearization points selection scheme according to which a state is chosen as a linearization point if the error between a current reduced model and the full order nonlinear system reaches a maximum value. A combination that not only selects linearization points based on an error controller but also assigns dynamic inspired weights is shown in this article. The proposed scheme generates approximations with higher accuracies. This is demonstrated by applying the proposed method to some benchmark nonlinear circuits including RC ladder network and inverter chain circuit and comparing the results with the conventional schemes.  相似文献   
10.
A method for estimating the sway angle using an observer has already been proposed. The state observer estimates the sway angle accurately and must use the detected sway angle value. However, the estimated sway angle has an error owing to rope length error, friction force, and wind. Moreover, the container mass cannot be determined, and therefore the observer parameter is not suitable. We already proposed robust antisway control for overcoming rope length error without adding a new sensor. Further, we designed a friction disturbance observer to cancel out the influence of the friction force. In this paper, we first propose a container mass estimation method when a crane system performs rolling up control. The observer parameter can be selected using the estimated mass value. Second, in crane parallel shift control, we propose a robust antisway control even when there is a wind disturbance. We design a wind disturbance observer and propose a wind disturbance estimator to separate the friction observer output from the wind disturbance observer output. We confirm through experiments that the proposed method can reduce vibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号