首页 | 本学科首页   官方微博 | 高级检索  
     


Wide PRIME-current range for all-magnetic shift registers
Abstract:In an all-magnetic resistance-type shift register, a PRIME current pulsei_{p}(t), of amplitude Ip, is applied to Npand Nbturns through the minor and major apertures, respectively. For given operation frequencyf, the ratioR = I_{p}^{max}/I_{p}^{min}, whereI_{p}^{min} < I_{p} < I_{p}^{max}is the PRIME range of bistable operation, is maximized by matchingN_{p}/N_{b}so thatI_{p}^{max}values determined by spurious ZERO buildup and ONE dropout are the same. For a rectangular (or dc)i_{p}(t), the matchedN_{p}/N_{b}is fixed by the core properties, and Rmaxis limited (e.g., <7). However, ifi_{p}(t)rises gradually, the matchedN_{p}/N_{b}depends also on the rise time Trofi_{p}(t). The lowerfis, with corresponding larger Tr, the smaller is the matchedN_{p}/N_{b}, and the larger is Rmax. Calculation ofRis carried for ramp and half-sinusoidali_{p}(t)waveforms. The latter, for instance, atT = 25degC yields Rmaxvalues of 14.0 and 22.0 forfof 1.0 and 0.5 kc/s respectively. Such wide PRIME ranges permit reliable register operation in a wide temperature range without resorting to temperature compensation of Ip. Experimental results are in agreement with the calculation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号