首页 | 本学科首页   官方微博 | 高级检索  
     

解排列优化的整数编码多智能体进化算法
引用本文:袁志. 解排列优化的整数编码多智能体进化算法[J]. 软件, 2011, 32(5): 24-26. DOI: 10.3969/j.issn.1003-6970.2011.05.007
作者姓名:袁志
作者单位:广州大学华软软件学院,广州,510990
摘    要:为解排列优化问题,在多智能体进化算法的基础上,提出一种整数编码的多智能体进化算法。重新定义了竞争算子和自学习算子。在网格内,智能体与周围的8个智能体构成竞争域,优胜智能体将编码段植入失败智能体,只有优胜者能获得自学习机会,自学习算子中智能体通过两种编码段换位方式来提升能量。使用本算法在旅行商问题典型数据上进行测试,与现有文献比较,表明该算法具有更好的全局寻优能力而且收敛稳定性更好。

关 键 词:排列优化  多智能体进化算法  旅行商问题  进化算法  整数规划

Number Coding Multi-Agent Evolutionary Algorithm for Deployment Optimization
YUAN Zhi. Number Coding Multi-Agent Evolutionary Algorithm for Deployment Optimization[J]. Software, 2011, 32(5): 24-26. DOI: 10.3969/j.issn.1003-6970.2011.05.007
Authors:YUAN Zhi
Affiliation:YUAN Zhi (South-China Institute of Software Engineering,Guangzhou University,Guangzhou 510990,China)
Abstract:For deployment optimization,Number Coding MAEA named as NC-MAEA is proposed based on Multi-agent Evolutionary Algorithm,the competition operator and learning operator are redefined.In grids,a agent and 8 agents around constitute a competing area,the winner plants it's codes fragment into failure's codes series,only winner obtains learning chance,in learning process it swap code fragments in two ways to improve energy.Simulated with the typical test data of in traveling salesman problems,compared with other ...
Keywords:deployment optimization  Multi-Agent Evolutionary Algorithm  traveling salesman problem  Evolution Algorithm  integer programming  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号