首页 | 本学科首页   官方微博 | 高级检索  
     


Interface‐Directed Self‐Assembly of Cell‐Laden Microgels
Authors:Behnam Zamanian  Mahdokht Masaeli  Jason W Nichol  Masoud Khabiry  Matthew J Hancock  Hojae Bae  Ali Khademhosseini
Abstract:Cell‐laden hydrogels show great promise for creating engineered tissues. However, a major shortcoming with these systems has been the inability to fabricate structures with controlled micrometer‐scale features on a biologically relevant length scale. In this Full Paper, a rapid method is demonstrated for creating centimeter‐scale, cell‐laden hydrogels through the assembly of shape‐controlled microgels or a liquid–air interface. Cell‐laden microgels of specific shapes are randomly placed on the surface of a high‐density, hydrophobic solution, induced to aggregate and then crosslinked into macroscale tissue‐like structures. The resulting assemblies are cell‐laden hydrogel sheets consisting of tightly packed, ordered microgel units. In addition, a hierarchical approach creates complex multigel building blocks, which are then assembled into tissues with precise spatial control over the cell distribution. The results demonstrate that forces at an air–liquid interface can be used to self‐assemble spatially controllable, cocultured tissue‐like structures.
Keywords:cell encapsulation  microgels  self‐assembly  tissue engineering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号