首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element analysis and experimental investigation on deformation mechanism of non-axisymmetric tube spinning
Authors:Qinxiang Xia  Xiuquan Cheng  Hui Long  Feng Ruan
Affiliation:1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
2. Department of Aircraft Maintenance Engineering, Guangzhou Civil Aviation College, Guangzhou, 510403, People’s Republic of China
3. School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE, UK
Abstract:This paper developed 3D elastoplastic finite element analysis (FEA) models to investigate non-axisymmetric tubes neck spinning. The three-roller mandreless neck spinning process was simulated by commercial FEA software, MSC. Marc. The distribution of the transient von Mises stresses in the contact zone between the roller and the blank, and the equivalent plastic strains after spinning were obtained. The locations and causes of fractures were analyzed. The thickness distribution of the spun workpiece was investigated numerically and experimentally. It shows that during 3D non-axisymmetric tubes spinning, diametral elongation and fractures mostly occur at the opening end of workpiece, which considered as the primary location of defects. Fractures may also occur easily at the initial spinning area, which may be considered a secondary location of defects. The distributions of equivalent stresses and strains are non-uniform during both offset and oblique 3D non-axisymmetric tubes spinning. The maximum stress and strain values occur at the location where the biggest offset or inclination is induced, while the minimum values occur at the opposite location of 180° away from the maximum values. For the oblique tube, however, the strain distribution changes gradually along the axial direction, which is different from that of the offset tube. Thinning occurs during forward path spinning and thickening occurs during backward path spinning. Therefore, for multipath neck spinning processes, forward and backward paths should be applied alternately to avoid excessive thinning or thickening of workpiece.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号