首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of ethanol gas sensing properties of Dy-doped SnO2 nanostructures
Authors:Gurpreet Singh  Maninder Kaur  Bindiya Arora  Ravi Chand Singh
Affiliation:1.Department of Physics,Guru Nanak Dev University,Amritsar,India
Abstract:In this paper we report doping induced enhanced sensor response of SnO2 based sensor towards ethanol at a working temperature of 200 °C. Undoped and dysprosium-doped (Dy-doped) SnO2 nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and Raman results verified tetragonal rutile structure of the prepared samples. It has been observed that crystallite size reduced with increase in dopant concentration. In addition, the particle size has been calculated from Raman spectroscopy using phonon confinement model and the values match very well with results obtained from TEM and X-ray diffraction investigations. Dy-doped SnO2 sensors exhibited significantly enhanced response towards ethanol as compared to undoped sensor. The optimum operating temperature of doped sensor reduced to 200 °C as compared to 320 °C for that of undoped sensor. Moreover, sensor fabricated from Dy-doped SnO2 nanostructures was highly selective toward ethanol which signifies its potential use for commercial applications. The gas sensing mechanism of SnO2 and possible origin of enhanced sensor response has been discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号