首页 | 本学科首页   官方微博 | 高级检索  
     


Enzyme-sharing as a cause of multi-stationarity in signalling systems
Authors:Elisenda Feliu  Carsten Wiuf
Affiliation:Bioinformatics Research Centre, Aarhus University, C. F. Møllers Allé 8, 8000 Aarhus, Denmark
Abstract:Multi-stationarity in biological systems is a mechanism of cellular decision-making. In particular, signalling pathways regulated by protein phosphorylation display features that facilitate a variety of responses to different biological inputs. The features that lead to multi-stationarity are of particular interest to determine, as well as the stability, properties of the steady states. In this paper, we determine conditions for the emergence of multi-stationarity in small motifs without feedback that repeatedly occur in signalling pathways. We derive an explicit mathematical relationship φ between the concentration of a chemical species at steady state and a conserved quantity of the system such as the total amount of substrate available. We show that φ determines the number of steady states and provides a necessary condition for a steady state to be stable—that is, to be biologically attainable. Further, we identify characteristics of the motifs that lead to multi-stationarity, and extend the view that multi-stationarity in signalling pathways arises from multi-site phosphorylation. Our approach relies on mass-action kinetics, and the conclusions are drawn in full generality without resorting to simulations or random generation of parameters. The approach is extensible to other systems.
Keywords:steady state  kinase  stability  cross-talk  phosphorylation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号