首页 | 本学科首页   官方微博 | 高级检索  
     

随机微粒群优化算法
引用本文:张燕,汪镭,吴启迪. 随机微粒群优化算法[J]. 计算机工程, 2006, 32(16): 9-10,1
作者姓名:张燕  汪镭  吴启迪
作者单位:同济大学电子与信息工程学院,上海,200092;同济大学电子与信息工程学院,上海,200092;同济大学电子与信息工程学院,上海,200092
基金项目:国家自然科学基金资助项目(70271035,60104004);上海市启明星计划资助项目(03QG14053);国家“973”计划基金资助项目(2002CB312202);国际合作子项目(合作方--微软上海公司)“车载系统的导航算法研究”
摘    要:微粒群优化算法是继蚁群算法之后又一种新的基于群体智能的启发式全局优化算法,其概念简单、易于实现,而且具有良好的优化性能,目前已在许多领域得到应用。但在求解高维多峰函数寻优问题时,算法易陷入局部最优。该文结合模拟退火算法的思想,提出了一种改进的微粒群优化算法——随机微粒群优化算法,该算法在运行初期具有更强的探索能力,可以避免群体过早陷入局部极值点。基于典型高维复杂函数的仿真结果表明,与基本微粒群优化算法相比,该混合算法具有更好的优化性能。

关 键 词:微粒群优化算法  群体智能  模拟退火
文章编号:1000-3428(2006)16-0009-02
收稿时间:2005-11-09
修稿时间:2005-11-09

Stochastic Particle Swarm Optimization Algorithm
ZHANG Yan,WANG Lei,WU Qidi. Stochastic Particle Swarm Optimization Algorithm[J]. Computer Engineering, 2006, 32(16): 9-10,1
Authors:ZHANG Yan  WANG Lei  WU Qidi
Affiliation:School of Electronics and Information Engineering, Tongji University, Shanghai 200092
Abstract:Particle swarm optimization (PSO) is a new heuristic global optimization algorithm based on swarm intelligence after ant colony algorithm. The algorithm is simple, easy to implement and has good performance of optimization. Now it has been applied in many fields. However, when optimizing multidimensional and multimodal functions, the basic particle swarm optimization is apt to be trapped in local optima. This paper proposes a modified optimization method——stochastic particle swarm optimization (SPSO), which combines the standard version with simulated annealing algorithm. This modified version has stronger exploitation ability at the beginning, so it can keep particle swarm from getting into local optima too early. Simulation results on benchmark complex functions with high dimension show that this hybrid algorithm performs better than the basic particle swarm optimization.
Keywords:Particle swarm optimization algorithm   Swarm intelligence   Simulated annealing
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号