首页 | 本学科首页   官方微博 | 高级检索  
     


Fast and accurate parameter estimation algorithm for digital distance relaying
Affiliation:Department of Electrical and Computer Engineering, University of Idaho, Moscow, ID 83844, United States;Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran;School of Electric Power, South China University of Technology, Guangzhou 510640, China
Abstract:Response of digital distance relaying depends on the fast and accurate calculation of parameters such as voltage and current phasors and fault impedance. This paper describes a new apparent impedance estimation algorithm that is based on modal components theory. It is shown in the paper that the proposed algorithm has several advantageous features in terms of speed and accuracy over previously suggested symmetrical and modal components based algorithms. The paper discusses a procedure for deriving a fault impedance estimation algorithm that can be used for protecting power transmission lines. The proposed algorithm was evaluated using an alternative transient program (ATP). The program models a power system, simulates many fault conditions on a selected transmission line and generates fault data. The relay software then obtains filtered, scaled and sampled data and calculates fault impedance using the proposed algorithm. The relay characteristic makes trip decisions based on the fault impedance estimates. The paper shows the feasibility of the proposed algorithm for first zone distance protection. Some results of these studies are presented and discussed in the paper.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号