首页 | 本学科首页   官方微博 | 高级检索  
     


Algebraic pruning: a fast technique for curve and surface intersection
Authors:Dinesh Manocha  Shankar Krishnan
Affiliation:

Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, USA

Abstract:Computing the intersection of parametric and algebraic curves and surfaces is a fundamental problem in computer graphics and geometric modeling. This problem has been extensively studied in the literature and different techniques based on subdivision, interval analysis and algebraic formulation are known. For low degree curves and surfaces algebraic methods are considered to be the fastest, whereas techniques based on subdivision and Bézier clipping perform better for higher degree intersections. In this paper, we introduce a new technique of algebraic pruning based on the algebraic approaches and eigenvalue formulation of the problem. The resulting algorithm corresponds to computing only selected eigenvalues in the domain of intersection. This is based on matrix formulation of the intersection problem, power iterations and geometric properties of Bézier curves and surfaces. The algorithm prunes the domain and converges to the solutions rapidly. It has been applied to intersection of parametric and algebraic curves, ray tracing and curve-surface intersections. The resulting algorithm compares favorably with earlier methods in terms of performance and accuracy.
Keywords:Intersection  Curves  Surfaces  Ray-tracing  Resultants  Eigendecomposition  Solid modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号