首页 | 本学科首页   官方微博 | 高级检索  
     


Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm
Authors:Eyal Kurzbaum  Shlomo Sela  Robert Armon
Affiliation:a Faculty of Civil & Environmental Engineering, Division of Environmental, Water & Agricultural Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
b Department of Food Science, The Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
Abstract:In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent.In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10−9 mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10−11-2.04 × 10−10 and 8.04 × 10−11-4.39 × 10−10 (mg phenol/CFU/h), respectively.In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μmax = 1.15/h, Ks = 35.4 mg/L and Ki = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes.Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass.Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed.
Keywords:Pseudomonas pseudoalcaligenes   Rhizosphere   Phenol   Biodegradation   Biofilm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号