首页 | 本学科首页   官方微博 | 高级检索  
     


Breakage and re-growth of flocs formed by charge neutralization using alum and polyDADMAC
Authors:Wenzheng Yu  John Gregory  Luiza C Campos
Affiliation:Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK
Abstract:The formation, breakage and re-growth of flocs were investigated using alum and polyDADMAC to explore the reversibility of floc breakage. There is a significant reversibility of the breakage process, i.e. the broken flocs can re-grow to the size before breakage, when charge neutralization dominates the coagulation mechanism. However, for higher alum dosage, the break-up process displayed a distinct irreversibility. When coagulated in charge neutralization, the re-growth process of alum was nearly the same as that of polyDADMAC. The average size, coagulation rate and fractal dimension of flocs before and after breakage were nearly the same, including alum and polyDADMAC. While at higher alum dosage, the average size, coagulation rate and fractal dimension of flocs after breakage were much lower than that before breakage. Most important is that the number of small flocs after breakage and re-growth was much less than before breakage when charge neutralization dominated the coagulation mechanism. On the contrary, at higher alum dosage, the small flocs, after breakage and re-growth, increased. The fractal dimension of flocs with alum increased as coagulation time increased until a limiting floc size was reached, while for higher alum dosage, it decreased, whether before or after breakage. The determining parameter for floc re-growth is probably not the fractal dimension, but rather the chemical characteristics of the flocs surface.
Keywords:Charge neutralization  Floc breakage  Re-growth  Alum  PolyDADMAC
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号