首页 | 本学科首页   官方微博 | 高级检索  
     


Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata
Authors:Joana F de Sá S Costa  Cidália MS Botelho  Eduardo AB da Silva  Rui AR Boaventura
Affiliation:LSRE - Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Abstract:Ca-loaded Pelvetia canaliculata biomass was used to remove Pb2+ in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g−1) and hydroxyl (0.8 mmol g−1), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO3 and CaCl2) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H+ and Pb2+ for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants αCaH = 9 ± 1 and αCaPb = 44 ± 5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3 M HNO3) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73 × 10−7 cm2 s−1 for H+, 7.56 × 10−8 cm2 s−1 for Pb2+ and 6.37 × 10−8 cm2 s−1 for Ca2+.
Keywords:Ion exchange  Nernst-Planck equations  Biosorption  Pelvetia canaliculata  Lead ions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号