首页 | 本学科首页   官方微博 | 高级检索  
     

包装称量工作站控制系统设计
引用本文:马子龙. 包装称量工作站控制系统设计[J]. 包装工程, 2021, 42(23): 238-242. DOI: 10.19554/j.cnki.1001-3563.2021.23.034
作者姓名:马子龙
作者单位:广西机电职业技术学院,南宁 530007
基金项目:广西高校中青年教师科研基础能力提升项目(2019KY1302)
摘    要:目的 为提高包装称量精度,利用FPGA控制器设计一种包装称量工作站控制系统.方法 介绍包装称量工作站基本结构,包括称量传感器、核心控制器、称量仪表等.给出了基于FPGA的称量控制系统结构,主要包括传感器信号处理电路、模数转换电路、FPGA控制器、显示模块、存储模块以及通讯电路等.基于过程神经网络设计一种称量控制器,可在一定程度上提高称量精度.最后,进行实验研究.结果 人工称量的平均误差为2.39 g,称量合格率只有65%;自动称量的平均误差为0.88 g,称量合格率则可以达到98.3%,称量精度明显提高.结论 所述包装称量工作站的称量精度明显高于人工模式,可靠性高,具有一定的推广价值.

关 键 词:包装称量  FPGA  过程神经网络  误差补偿
收稿时间:2021-05-04

Design of Control System for Packaging Weighing Workstation
MA Zi-long. Design of Control System for Packaging Weighing Workstation[J]. Packaging Engineering, 2021, 42(23): 238-242. DOI: 10.19554/j.cnki.1001-3563.2021.23.034
Authors:MA Zi-long
Affiliation:Guangxi Technological College of Machinery and Electricity, Nanning 530007, China
Abstract:The work aims to design a control system of packaging weighing workstation by FPGA controller to improve the accuracy of packaging weighing. The basic structure of packaging weighing station, including weighing sensor, core controller, weighing instrument, etc., was introduced. The structure of weighting control system based on FPGA, including sensor signal processing circuit, analog-digital conversion circuit, FPGA controller, display module, storage module, communication circuit, etc., was presented. A weighing controller based on process neural network was designed, which could improve the weighing accuracy to some extent. Finally, an experimental study was carried out. The average error of manual weighing was 2.39 g; and the qualified rate of weighing was only 65%. The average error of automatic weighing was 0.88 g; the qualified rate of weighing could reach 98.3%. The weighing accuracy was obviously improved. The weighing accuracy of the packaging weighing workstation is obviously higher than that of the manual mode. It has high reliability and certain promotion value.
Keywords:package weighing   FPGA   process neural network   error compensation
本文献已被 万方数据 等数据库收录!
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号