首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms leading to process improvements in lignite liquefaction using CO and H2S
Authors:Everett A Sondreal  Warrack G Wilson  Virgil I Stenberg
Affiliation:1. Grand Forks Energy Technology Center, US Department of Energy, Grand Forks, North Dakota 58202, USA;2. Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
Abstract:Optimum distillate yields from US lignites can be as high on a dry, ash-free basis as those obtained from bituminous coals, but only if the vacuum bottoms are recycled. Lignites are more readily liquefied if the reducing gas contains some carbon monoxide and water, which together with bottoms recycle has proven to yield the highest conversions and the best bench-unit operability. The recycle solvent in the reported tests consisted of unseparated product slurry, including coal mineral constituents. Variability in coal minerals among nine widely representative US low-rank coals did not appear to correlate with liquefaction behaviour. Addition of iron pyrite did, however, improve yields and product quality, as measured by hydrogen-to-carbon ratio. Future improvements in liquefaction processes for lignite must maintain high liquid yields at reduced levels of temperature, pressure, and reaction time whilst using less reductant, preferably in the form of synthesis gas (CO + H2) and water instead of the more expensive pure hydrogen. Understanding the process chemistry of carbon monoxide and sulphur (including H2S) during lignite liquefaction is a key factor in accomplishing these improvements. This Paper reviews proposed mechanisms for such reactions from the viewpoint of their relative importance in affecting process improvements. The alkali formate mechanism first proposed to explain the reduction by CO does not adequately explain its role in lignite liquefaction. Other possible mechanisms include an isoformate intermediate, a formic acid intermediate, a carbon monoxide radical anion, direct reaction with lignite, and the activation of CO by alkali and alkaline earth cations and by hydrogen sulphide. Hydrogen sulphide reacts with model compounds which represent key bond types in low-rank coal in the following ways: (1) hydrocracking; (2) hydrogen donor; (3) insertion reactions in aromatic rings; (4) hydrogen abstraction, with elemental sulphur as a reaction intermediate; and (5) catalysis of the water-gas shift reaction. It appears that all of these reaction pathways may be operative when catalytic amounts of H2S are added during liquefaction of lignite. In bench recycle tests, the addition of H2S as a homogeneous catalyst reduced reductant consumption as much as three-fold whilst maintaining high yield levels when the reaction temperature was reduced by 60°C. Attainment of the high distillate yield at 400°C was accompanied by a marked decrease in the production of hydrocarbon gases, which normally is a major cause of unproductive hydrogen consumption and solvent degradation via hydrocracking. Processing with synthesis gas and inherent coal moisture using bottoms recycle and H2S as a catalyst appears to be the most promising alternative combination of conditions for producing liquids from lignite at reduced cost.
Keywords:lignite  liquefaction  carbon monoxide  hydrogen sulphide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号