首页 | 本学科首页   官方微博 | 高级检索  
     


pH Sensing Properties of Flexible,Bias‐Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum
Authors:Jinglei Ping  Jacquelyn E Blum  Ramya Vishnubhotla  Amey Vrudhula  Carl H Naylor  Zhaoli Gao  Jeffery G Saven  Alan T Charlie Johnson
Affiliation:1. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA;2. Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA;3. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
Abstract:Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very‐low‐power (femtowatt) detection of the pH of complex biofluids by measuring real‐time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current–pH dependence is well described by a hybrid analytical–computational model, where the electric double layer derives from an intrinsic, pH‐independent (positive) charge associated with the graphene–water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real‐time current variation, the methodology is potentially suitable for use to detect tumor‐induced changes in extracellular pH.
Keywords:flexible  graphene  microelectrodes  pH  tumors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号