首页 | 本学科首页   官方微博 | 高级检索  
     


Optimizing raw material composition to increase sustainability in porcelain tile production: A simulation-based approach
Authors:Carine Lourenco Alves  Vasyl Skorych  Agenor De Noni Jr  Dachamir Hotza  S Y Gómez González  Stefan Heinrich
Affiliation:1. Institute of Solids Process Engineering and Particle Technology, Hamburg University of Technology (TUHH), Hamburg, Germany;2. Department of Chemical Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
Abstract:Reducing the environmental impact of porcelain tile production while maintaining cost-effectiveness is challenging. This work introduced a novel modeling approach for optimizing a standard composition range comprising kaolinite (15–38 wt.%), illite (0–20 wt.%), quartz (20–40 wt.%), and feldspar (20–45 wt.%) to establish a robust composition interval for porcelain stoneware tiles. The proposed study considers several factors, such as composition impact on the manufacturing sequence, production costs, and CO2 emission. A flowsheet simulation database was generated by coupling the Dyssol framework with MATLAB. This study investigated the influence of raw material composition within the process sequence, the total CO2 emissions, and production costs within the contexts of Spain and Brazil, two of the top five global producers. Granules with a higher proportion of talc and illite exhibit reduced moisture content after spray drying, and these combinations have lower green body porosity after compaction. The addition of talc allowed for decreased porosity content after compaction reduced firing temperature, and lowered costs and CO2 emissions despite the higher prices associated with talc. The proposed simulation methodology offers a powerful decision-making tool for optimizing raw material composition to minimize cost and CO2 emissions in the porcelain tile production. This methodology represents an early stride toward integrating digital twin methodologies within the ceramic tile sector, facilitating improved process regulation, and promoting the adoption of digital technologies.
Keywords:digitalization  optimization  porcelain tile  simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号