首页 | 本学科首页   官方微博 | 高级检索  
     


A tilting device for three-dimensional microscopy: Application to in situ imaging of interphase cell nuclei
Authors:Joachim Bradl  Michael Hausmann  Volker Ehemann  Dymitr Komitowski  Christoph Cremer
Abstract:The resolution of an optical microscope is considerably less in the direction of the optical axis (z) than in the focal plane (x-y plane). This is true of conventional as well as confocal microscopes. For quantitative microscopy, for instance studies of the three-dimensional (3-D) organization of chromosomes in human interphase cell nuclei, the 3-D image must be reconstructed by a point spread function or an optical transfer function with careful consideration of the properties of the imaging system. To alleviate the reconstruction problem, a tilting device was developed so that several data sets of the same cell nucleus under different views could be registered. The 3-D information was obtained from a series of optical sections with a Zeiss transmission light microscope Axiomat using a stage with a computer-controlled stepping motor for movement in the z-axis. The tilting device on the Axiomat stage could turn a cell nucleus through any desired angle and also provide movement in the x-y direction. The technique was applied to 3-D imaging of human lymphocyte cell nuclei, which were labelled by in situ hybridization with the DNA probe pUC 1.77 (mainly specific for chromosome 1). For each nucleus, 3-D data sets were registered at viewing angles of 0°, 90° and 180°; the volumes and positions of the labelled regions (spots) were calculated. The results also confirm that, in principle, any angle of a 2p geometry can be fixed for data acquisition with a high reproducibility. This indicates the feasibility of axiotomographical microscopy of cell nuclei.
Keywords:Three-dimensional microscopy  tilted view  optical sectioning  image reconstruction  axial tomography  in situ hybridization  volumes of cell nuclei  intranuclear topography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号