首页 | 本学科首页   官方微博 | 高级检索  
     

基于回归分析与BP神经网络的风机噪声预测
引用本文:程静,王维庆,何山. 基于回归分析与BP神经网络的风机噪声预测[J]. 噪声与振动控制, 2013, 33(6): 49-52
作者姓名:程静  王维庆  何山
作者单位:( 1. 新疆大学 电气工程学院, 乌鲁木齐 830047;2. 可再生能源发电与并网技术教育部工程研究中心, 乌鲁木齐 830047 )
基金项目:国家自然科学基金(基金编号:51267017);新疆大学自然科学基金(基金编号:XY110129)
摘    要:针对能源问题和风力发电机组噪声检测过程复杂的现状,研究IEC 61400-11风力发电机组噪声测量技术标准,提出一种回归分析和BP神经网络相结合的方法,对风电机组噪声的A计权声压级进行预测。由风电现场采集的数据建立多元线性回归方程,求取回归系数,分析简化后,用较少的输入量训练BP神经网络,建立机组的噪声预测模型。将模型应用于新疆某风电场的实际测试过程中,效果良好,验证该方法的可行性和有效性。

关 键 词:声学   风力发电   噪声预测   回归分析   BP神经网络  
收稿时间:2013-01-31

Noise Prediction of Wind Turbines Based on Regression Analysis
CHENG Jing,WANG Wei-qing,HE Shan. Noise Prediction of Wind Turbines Based on Regression Analysis[J]. Noise and Vibration Control, 2013, 33(6): 49-52
Authors:CHENG Jing  WANG Wei-qing  HE Shan
Affiliation:1. College of Electric Engineering, Xinjiang University, Urumqi 830047, China; 2. Engineering Research Center of Education Ministry for Renewable Energy Power Generation and Grid Technology, Urumqi 830047, China )
Abstract:Aiming at the complicated process of wind turbine noise detection, the IEC 61400-11 technology standard for noise measurement was studied, and a kind of forecasting method combining regression analysis with BP neural network was put forward. The A-weighted sound pressure level of wind turbine noise was forecasted. The multi-variable linear regression equation was established according to the in-situ collected noise data, and the regression coefficients were obtained. Then the simplified equation was used to train the BP neural network with less input data. Finally, the noise prediction model was established. This model was applied to noise measurement in a wind farm in Xinjiang efficiently. And the feasibility and effectiveness of this method was verified.
Keywords:acoustics  wind turbine generation  noise prediction  regression analysis  BP neural network
本文献已被 维普 等数据库收录!
点击此处可从《噪声与振动控制》浏览原始摘要信息
点击此处可从《噪声与振动控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号