首页 | 本学科首页   官方微博 | 高级检索  
     

改善独立微网频率动态特性的虚拟同步发电机模型预测控制
引用本文:陈来军,王任,郑天文,司杨,梅生伟. 改善独立微网频率动态特性的虚拟同步发电机模型预测控制[J]. 电力系统自动化, 2018, 42(3): 40-47
作者姓名:陈来军  王任  郑天文  司杨  梅生伟
作者单位:青海省清洁能源高效利用重点实验室(青海大学新能源光伏产业研究中心), 青海省西宁市810016; 电力系统及发电设备控制和仿真国家重点实验室(清华大学), 北京市100084,电力系统及发电设备控制和仿真国家重点实验室(清华大学), 北京市100084,青海省清洁能源高效利用重点实验室(青海大学新能源光伏产业研究中心), 青海省西宁市810016; 电力系统及发电设备控制和仿真国家重点实验室(清华大学), 北京市100084,青海省清洁能源高效利用重点实验室(青海大学新能源光伏产业研究中心), 青海省西宁市810016,青海省清洁能源高效利用重点实验室(青海大学新能源光伏产业研究中心), 青海省西宁市810016; 电力系统及发电设备控制和仿真国家重点实验室(清华大学), 北京市100084
基金项目:国家自然科学基金创新研究群体科学基金资助项目(51621065);国家自然科学基金地区科学基金资助项目(51567021);中国博士后科学基金资助项目(2016M601025)
摘    要:随着分布式能源在独立微网内的渗透率不断升高,系统惯量水平逐渐降低。虚拟同步发电机(VSG)由于能够模拟惯量,对系统频率的动态变化具有一定的阻尼作用,已逐步应用于微网中。针对新能源出力波动或负荷投切等导致微网内瞬时功率失衡,进而引起系统频率振荡甚至超过安全约束的问题,提出了基于模型预测控制(MPC)的VSG控制方法。建立了以频率变化率为约束,以频率偏差和VSG出力加权值为优化目标的预测模型。设计了根据系统频率及VSG输出电压—电流等物理量,利用预测模型计算所需功率增量,并据此改变VSG输入功率设定值的整体控制策略。同时,给出了预测模型的求解算法,并对算法收敛性进行分析,为关键参数的选取提供了依据。通过独立微网内负荷投切和分布式电源出力波动等典型工况下的仿真,验证了所提控制策略的正确性和有效性。

关 键 词:独立微网(微电网);频率动态特性;虚拟同步发电机;模型预测控制
收稿时间:2017-03-12
修稿时间:2017-09-20

Model Predictive Control of Virtual Synchronous Generator to Improve Dynamic Characteristic of Frequency for Isolated Microgrid
CHEN Laijun,WANG Ren,ZHENG Tianwen,SI Yang and MEI Shengwei. Model Predictive Control of Virtual Synchronous Generator to Improve Dynamic Characteristic of Frequency for Isolated Microgrid[J]. Automation of Electric Power Systems, 2018, 42(3): 40-47
Authors:CHEN Laijun  WANG Ren  ZHENG Tianwen  SI Yang  MEI Shengwei
Affiliation:Qinghai Key Lab of Efficient Utilization of Clean Energy (New Energy Photovoltaic Industry Research Center, Qinghai University), Xining 810016, China; State Key Laboratory of Control and Simulation of Power System and Generation Equipments(Tsinghua University), Beijing 100084, China,State Key Laboratory of Control and Simulation of Power System and Generation Equipments(Tsinghua University), Beijing 100084, China,Qinghai Key Lab of Efficient Utilization of Clean Energy (New Energy Photovoltaic Industry Research Center, Qinghai University), Xining 810016, China; State Key Laboratory of Control and Simulation of Power System and Generation Equipments(Tsinghua University), Beijing 100084, China,Qinghai Key Lab of Efficient Utilization of Clean Energy (New Energy Photovoltaic Industry Research Center, Qinghai University), Xining 810016, China and Qinghai Key Lab of Efficient Utilization of Clean Energy (New Energy Photovoltaic Industry Research Center, Qinghai University), Xining 810016, China; State Key Laboratory of Control and Simulation of Power System and Generation Equipments(Tsinghua University), Beijing 100084, China
Abstract:With the continuous increasing penetration of distributed energy in isolated microgrid, the inertia of system is getting lower gradually. Virtual synchronous generator(VSG), which can simulate the inertia of synchronous generator and plays a vital role in damping dynamic frequency variations, has been gradually applied in microgrid. Frequency of island microgrid will oscillate severely and even may exceed its safety constraints when the power imbalance caused by fluctuations of renewable energy output or loads switching happens. To deal with these problems, a virtual synchronous generator control method based on model predictive control is proposed. Firstly, the predictive model, which aims at optimizing the weighted combination of frequency deviation and VSG output with frequency change rate as the constraint is established. Then, the systematic control strategy is designed according to physical quantities, such as frequency, VSG output voltage and current, the increment of active power needed is calculated for changing the power reference of VSG. Meanwhile, the solution of the predictive model is given, and the convergence of the algorithm is analyzed, which provides the basis for selecting key parameters. The correctness and effectiveness of the proposed control strategy are verified by the simulation results of two typical cases.
Keywords:isolated microgrid   frequency dynamic characteristic   virtual synchronous generator   model predictive control
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号