首页 | 本学科首页   官方微博 | 高级检索  
     


Visualizing multiphase flow and trapped fluid configurations in a model three‐dimensional porous medium
Authors:Stefan Münster  David A. Weitz
Affiliation:1. Dept. of Physics, Harvard University, , Cambridge, MA, 02138;2. Max Planck Institute for the Science of Light and Center for Medical Physics and Technology, Universitat Erlangen‐Nürnberg, , Erlangen, Germany
Abstract:We report an approach to fully visualize the flow of two immiscible fluids through a model three‐dimensional (3‐D) porous medium at pore‐scale resolution. Using confocal microscopy, we directly image the drainage of the medium by the nonwetting oil and subsequent imbibition by the wetting fluid. During imbibition, the wetting fluid pinches off threads of oil in the narrow crevices of the medium, forming disconnected oil ganglia. Some of these ganglia remain trapped within the medium. By resolving the full 3‐D structure of the trapped ganglia, we show that the typical ganglion size, as well as the total amount of residual oil, decreases as the capillary number Ca increases; this behavior reflects the competition between the viscous pressure in the wetting fluid and the capillary pressure required to force oil through the pores of the medium. This work thus shows how pore‐scale fluid dynamics influence the trapped fluid configurations in multiphase flow through 3‐D porous media. © 2013 American Institute of Chemical Engineers AIChE J, 59:1022‐1029, 2013
Keywords:fluid mechanics and transport phenomena  porous media  multiphase flow  permeability  capillarity  wetting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号