首页 | 本学科首页   官方微博 | 高级检索  
     


Dry‐Type Artificial Muscles Based on Pendent Sulfonated Chitosan and Functionalized Graphene Oxide for Greatly Enhanced Ionic Interactions and Mechanical Stiffness
Authors:Jin‐Han Jeon  Ravi Kumar Cheedarala  Chang‐Doo Kee  Il‐Kwon Oh
Affiliation:1. School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak‐ro, Yuseong‐gu, Daejeon, 305‐701, Republic of Korea;2. School of Mechanical Systems Engineering, Chonnam National University, 300 Yongbong‐dong, Buk‐gu, Gwang‐Ju, 500‐757, Republic of Korea
Abstract:Biopolymer‐based artificial muscles are promising candidates for biomedical applications and smart electronic textiles due to their multifaceted advantages like natural abundance, eco‐friendliness, cost‐effectiveness, easy chemical modification and high electical reactivity. However, the biopolymer‐based actuators are showing relatively low actuation performance compared with synthetic electroactive polymers because of inadequate mechanical stiffness, low ionic conductivity and ionic exchange capacity (IEC), and poor durability over long‐term activation. This paper reports a high‐performance electro‐active nano‐biopolymer based on pendent sulfonated chitosan (PSC) and functionalized graphene oxide (GO), exhibiting strong electro‐chemo‐mechanical interations with ionic liquid (IL) in open air environment. The proposed GO‐PSC‐IL nano‐biopolymer membrane shows an icnreased tensile strength and ionic exchange capacity of up to 44.8% and 83.1%, respectively, and increased ionic conductivity of over 18 times, resulting in two times larger bending actuation than the pure chitosan actuator under electrical input signals. Eventually, the GO‐PSC‐IL actuators could show robust and high‐performance actuation even at the very low applied voltages that are required in realistic applications.
Keywords:artificial muscles  sulfonated chitosan  graphene oxide  ionic liquids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号