Two-Layer multistate Markov model for modeling a 1.8 GHz narrow-band wireless propagation channel in urban Taipei city |
| |
Authors: | Hsin-Piao Lin Ming-Jian Tseng |
| |
Affiliation: | Inst. of Comput. & Commun., Nat. Taipei Univ. of Technol., Taiwan; |
| |
Abstract: | An accurate propagation channel model is crucial for evaluating the performance of a communication system. A propagation channel can be described by a Markov model with a finite number of states, each of which is considered to be quasi-stationary over a short period. This work proposes a two-layer multistate Markov model. Instead of a large Markov transition matrix used in a conventional single-layer Markov model, two small Markov transition matrices are employed by a two-layer Markov model to reduce the computational complexity of the model without increasing the memory requirements. The proposed approach characterizes the multiplicative processes of a propagation channel as shadowing and fast fading. Each type of fading is considered as several channel states and each of the states corresponds to a specific mixed Rayleigh-lognormal distribution. Numerical results reveal that the statistical properties of the simulated data are quite close to those obtained from the measurements; indeed, the proposed two-layer Markov model is more accurate and less complex, and requires less memory than the single-layer Markov model. Furthermore, the proposed two-layer Markov model enables the fading statistics and error probability performance of a quadrature phase-shift keying modulation scheme in a typical urban Taipei environment to be more accurately predicted. Besides, it can easily be applied to similar environmental scenarios. |
| |
Keywords: | |
|
|