首页 | 本学科首页   官方微博 | 高级检索  
     


Composition-Dependent Passivation Efficiency at the CdS/CuIn1-xGaxSe2 Interface
Authors:Marco Ballabio  David Fuertes Marrón  Nicolas Barreau  Mischa Bonn  Enrique Cánovas
Affiliation:1. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;2. Instituto de Energía Solar, Universidad Politécnica de Madrid, ETSI Telecomunicación, Avda. Complutense 30, 28040 Madrid, Spain;3. Institut des Matériaux Jean Rouxel (IMN) – UMR6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
Abstract:The bandgap of CuIn1-xGaxSe2 (CIGS) chalcopyrite semiconductors can be tuned between ≈1.0 and ≈1.7 eV for Ga contents ranging between x = 0 and x = 1. While an optimum bandgap of 1.34 eV is desirable for achieving maximum solar energy conversion in solar cells, state-of-the-art CIGS-based devices experience a drop in efficiency for Ga contents x > 0.3 (i.e., for bandgaps >1.2 eV), an aspect that is limiting the full potential of these devices. The mechanism underlying the limited performance as a function of CIGS composition has remained elusive: both surface and bulk recombination effects are proposed. Here, the disentanglement between surface and bulk effects in CIGS absorbers as a function of Ga content is achieved by comparing photogenerated charge carrier dynamics in air/CIGS and surface-passivated ZnO/CdS/CIGS samples. While surface passivation prevents surface recombination of charge carriers for low Ga content (x < 0.3; up to 1.2 eV bandgap), surface recombination dominates for higher-bandgap materials. The results thus demonstrate that surface, rather than bulk effects, is responsible for the drop in efficiency for Ga contents larger than x ≈ 0.3.
Keywords:CIGS  CIGS/CdS  interfacial recombination  solar cells  THz spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号