首页 | 本学科首页   官方微博 | 高级检索  
     


Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors
Authors:Hao Wu  Hongwei Lu  Wenwu Xiao  Jinfan Yang  Hongxu Du  Yingbin Shen  Haijing Qu  Bei Jia  Suman K Manna  Mythili Ramachandran  Xiangdong Xue  Zhao Ma  Xiaobao Xu  Zhongling Wang  Yixuan He  Kit S Lam  Robert J Zawadzki  Yuanpei Li  Tzu-Yin Lin
Affiliation:1. Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817 USA;2. UC Davis RISE Eye-Pod Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616 USA;3. Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817 USA
Abstract:The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood–brain barrier/blood–brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ. STICK-NPs exhibit prolonged circulation time (17-fold higher area under curve) than the free agent, allowing increased opportunities to transpass the BBB/BBTB via glucose-transporter-mediated transcytosis by MA. The tumor acidic environment then triggers the transformation of the STICK-NPs into smaller nanoparticles and reveals a secondary CBA targeting moiety for deep tumor penetration and enhanced uptake in tumor cells. STICK-NPs significantly inhibit tumor growth and prolong the survival time with limited toxicity in mice with aggressive and chemoresistant diffuse intrinsic pontine glioma. This formulation tackles multiple physiological barriers on-demand with a simple and smart STICK design. Therefore, these features allow STICK-NPs to unleash the potential of brain tumor therapeutics to improve their treatment efficacy.
Keywords:blood–brain barrier  diffuse intrinsic pontine glioma  pH response  sequential targeting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号