首页 | 本学科首页   官方微博 | 高级检索  
     


Online optimal and adaptive integral tracking control for varying discrete-time systems using reinforcement learning
Authors:Ibrahim Sanusi  Andrew Mills  Tony Dodd  George Konstantopoulos
Affiliation:Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
Abstract:Conventional closed-form solution to the optimal control problem using optimal control theory is only available under the assumption that there are known system dynamics/models described as differential equations. Without such models, reinforcement learning (RL) as a candidate technique has been successfully applied to iteratively solve the optimal control problem for unknown or varying systems. For the optimal tracking control problem, existing RL techniques in the literature assume either the use of a predetermined feedforward input for the tracking control, restrictive assumptions on the reference model dynamics, or discounted tracking costs. Furthermore, by using discounted tracking costs, zero steady-state error cannot be guaranteed by the existing RL methods. This article therefore presents an optimal online RL tracking control framework for discrete-time (DT) systems, which does not impose any restrictive assumptions of the existing methods and equally guarantees zero steady-state tracking error. This is achieved by augmenting the original system dynamics with the integral of the error between the reference inputs and the tracked outputs for use in the online RL framework. It is further shown that the resulting value function for the DT linear quadratic tracker using the augmented formulation with integral control is also quadratic. This enables the development of Bellman equations, which use only the system measurements to solve the corresponding DT algebraic Riccati equation and obtain the optimal tracking control inputs online. Two RL strategies are thereafter proposed based on both the value function approximation and the Q-learning along with bounds on excitation for the convergence of the parameter estimates. Simulation case studies show the effectiveness of the proposed approach.
Keywords:adaptive control  adaptive dynamic programming  optimal tracking control  Q-function approximation  reinforcement learning
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号