首页 | 本学科首页   官方微博 | 高级检索  
     

基于离散过程神经元的乙烯生产装置软测量
引用本文:贾晓军,贠卫国. 基于离散过程神经元的乙烯生产装置软测量[J]. 数字社区&智能家居, 2009, 0(10)
作者姓名:贾晓军  贠卫国
作者单位:西安建筑科技大学信息与控制工程学院;
摘    要:针对传统M-P神经网络模型的时间依赖性问题,提出将离散过程神经元应用到乙烯裂解炉软测量中,并将Fletcher-Reeves修正的改进变梯度学习算法应用到离散过程神经元网络,达到提高过程神经元网络的训练速度的目的。最后用乙烯装置的生产数据进行仿真研究,仿真结果表明该改进算法具有明显的快速收敛性,实现了乙烯产率的预测。

关 键 词:离散过程神经元网络  软测量  训练速度  乙烯装置  

Soft Sensing of Ethylene Plant Based on the Discrete Process Neural
JIA Xiao-jun,YUN Wei-guo. Soft Sensing of Ethylene Plant Based on the Discrete Process Neural[J]. Digital Community & Smart Home, 2009, 0(10)
Authors:JIA Xiao-jun  YUN Wei-guo
Affiliation:School of Information and Control;Xi'an University of Architecture and Technology;Xi'an 710055;China
Abstract:For the time-dependent problem of M-P neural network model,applied the discrete process neural to the ethylene plant soft sensing,and the application of the Alternating Gradient training algorithm amended by Fletcher-Reeves algorithm on the discrete process of neural network.Finally,use the ethylene production plant production data to emulate.Simulation results show that the improved algo-rithm has obvious rapid convergence.Achieve a prediction of ethylene production.
Keywords:discrete process neural network  soft sensing  training speed  ethylene plant  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号