首页 | 本学科首页   官方微博 | 高级检索  
     

采用支持向量机的说话者确认中的样本平衡
引用本文:龙艳花,郭武,戴礼荣. 采用支持向量机的说话者确认中的样本平衡[J]. 中文信息学报, 2008, 22(3): 99-104
作者姓名:龙艳花  郭武  戴礼荣
作者单位:中国科学技术大学 电子工程与信息科学系 科大讯飞语音实验室 安徽 合肥230027
摘    要:支持向量机在与文本无关的话者确认系统中已经取得了广泛的应用,但是在实际应用系统中获得的目标说话人样本与冒认者样本数量比一般在几千分之一,因此存在很严重的样本非平衡问题,冒认者样本选择的好坏直接影响到整个系统的性能。本文提出了两种挑选冒认者样本的方法。实验证明这些方法能有效地解决上述问题,性能比随机挑选冒认者样本的方法有了提升,经过在2004年NIST说话人识别数据库上进行测试,等错误率由9.3%降低到6.8%,错误率相对下降了26.9%。

关 键 词:计算机应用  中文信息处理  支持向量机  冒认者  
文章编号:1003-0077(2008)03-0099-06
修稿时间:2007-05-09

SVM Based Training Data Balance for Speaker Verification
LONG Yan-hua,GUO Wu,DAI Li-rong. SVM Based Training Data Balance for Speaker Verification[J]. Journal of Chinese Information Processing, 2008, 22(3): 99-104
Authors:LONG Yan-hua  GUO Wu  DAI Li-rong
Affiliation:iFly Speech Lab, Department of Electronic Engineering and Information Science, University of
Science and Technology of China,Hefei, Anhui 230027, China
Abstract:Support Vector Machine(SVM)has been widely used in text-independent speaker verification systems.However,there are lots of training data unbalance problems with this algorithm due to the insufficiency of the data from target speakers.These problems may introduce severe performance degradation in application.So,it will influence the entire system's performance directly by choosing the right impostor.In this paper,we propose two strategies to select impostor's samples in SVM training.Experiments show that the methods proposed in the paper can efficiently solve the above unbalance problems,and significantly improve the performance of the system compared with the traditional methods which are based on random data selection algorithms.By testing the methods in the NIST 2004 benchmark,we have significantly reduced the equal error ratio of the speaker verification system from 0.093 to 0.068.
Keywords:computer application  Chinese information processing  support vector machine  speaker verification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号